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Abstract

Dimensionality reduction is an integral part of data visualization. It is a process that obtains a structure
preserving low-dimensional representation of the high-dimensional data. Two common criteria can be
used to achieve a dimensionality reduction: distance preservation and topology preservation. Inspired by
recent work in topological data analysis, we are on the quest for a dimensionality reduction technique
that achieves the criterion of homology preservation, a generalized version of topology preservation.
Specifically, we are interested in using topology-inspired manifold landmarking and manifold tearing to
aid such a process and evaluate their effectiveness.

Index Terms— Topological data analysis, dimensionality reduction, manifold landmarking, manifold
learning, high-dimensional data visualization

1 Introduction
Dimensionality reduction (DR) is a process that obtains a structure-preserving low-dimensional representa-
tion of the high-dimensional data. It plays an important role in high-dimensional data visualization in both
static and interactive settings. Two common criteria can be used to achieve a DR distance preservation
and topology preservation. Inspired by recent work in topological data analysis, we are on the quest for
a DR technique that achieves the criterion of homology preservation, a generalized version of topology
preservation.

To motivate our work, we begin by addressing the following questions: What is homology in the
context of topology? What is homology preservation in the context of structure preservation? Why does it
matter (and who cares) for homology preservation in high-dimensional data analysis and visualization?
See the following paragraphs on a history of homology, a discussion on homology-preservation DR, and
motivations from visualization to robotics.

A brief history of homology. Topology has been one of the most exciting research fields in modern
mathematics [29]. It is concerned with the properties of space that are preserved under continuous
deformations, such as stretching, crumpling, and bending, but not tearing or gluing [72].

The beginning of topology is arguably marked by Leonhard Euler, who published a paper in 1736
that solves the now famous Königsberg bridge problem. In the paper, titled “The Solution of a Problem
Relating to the Geometry of Position”, Euler was dealing with “a different type of geometry where distance
was not relevant.” [45] Johann Benedict Listing was credited to be the first to use the word “topology”
in print based on his 1847 work titled “Introductory Studies in Topology”; although many of Listing’s
topological ideas were due to Carl Friedrich Gauss [45]. Both Listing and Bernhard Riemann studied
the components and connectivity of surfaces. Listing examined connectivity in 3-dimensional Euclidean
space while Enrico Betti extended the idea to n dimensions. Henri Poincaré then gave a rigorous basis
to the idea of connectivity in a series of papers “Analysis situs” in 1895. He introduced the concept of
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Figure 1: In search of homology-preserving linear projections for a bended figure eight example. (a)
Uniformly sample projection directions on a sphere. (b) The original 3-dimensional input point cloud. (c)-(e)
Three instances of the 2-dimensional linear embeddings, (c) being the optimal as it produces the lowest
degree-2 Wasserstein distortion.

homology and improved upon the precise definition of Betti numbers of a space [45]. In other words, it
was Poincaré who “gave topology wings” [29] via the notion of homology.

The original motivation to define homology was that it can be used to tell two things (a.k.a. topological
spaces) apart by examining their holes. It is a process that associates a topological space with a sequence of
abelian groups called homology groups, which, roughly speaking, count and collate holes in a space [24].
In a nutshell, homology groups generalize a common-sense notion of connectivity. They detect and
describe the connected components (0-dimensional holes), tunnels (1-dimensional holes), voids (2-
dimensional holes), and holes of higher dimensions in the space.

It is not easy to give homology an intuitive and correct definition, but we will attempt to give a
layman’s version by quoting and modifying one given by Evelyn Lamb [33]: If it has one connected piece,
it has a 0-dimensional hole (imaging a cookie); If you can put it on a necklace, it has a 1-dimensional hole;
If you can fill it with toothpaste that is not exposed to the air (imaging a basketball), it has a 2-dimensional
hole; For holes of higher dimensions, you’re on your own.

A discussion on homology-preservation. DR techniques could be classified based on structure
preservation, namely, distance preservation or topology preservation. The preservation of pairwise dis-
tances ensures that the low-dimensional embedding inherits the geometric properties of the data [25]. For
instance, classical Multidimensional Scaling (MDS, a linear technique) preserves spatial distances (such as
the Euclidean distances) while Isomap (a nonlinear technique) uses geodesic distances (approximated by
graph distances) [36]. On the other hand, the quantitative natural of distance preservation also makes it very
constraining – it is like “supporting and bolting the space with rigid steel beams”; and in nonlinear cases
(such as manifolds), distances cannot be perfectly preserved [36]. The notion of topology preservation
refers to the preservation of neighborhood relations between subregions of the data. Topology preservation
techniques, such as locally linear embedding (LLE) [53] and Laplacian eigenmap [3], introduce some
flexibility where subregions of the data could be locally stretched or shrunk in order to embed them in a
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lower dimensional space [36].
In a way, many topology preservation DR techniques are concerned with a common-sense notion of

connectivity; that is, the 0-dimensional connectivities among neighboring data points. In this paper, we
focus on a generalized version of topology preservation, homology preservation, where we are interested
in the preservation of both 0-dimensional and 1-dimensional homology of the data. In particular, we
are in search of DR techniques that could preserve as much as possible of the 1-dimensional homology
(a.k.a. loops) of the data.

Motivations from visualization to robotics. Our first motivation to study homology-preserving
DR is from the perspective of visualization. As technologies advance, we are collecting and generating a
wide variety of large, complex, and high-dimensional datasets that demand insight-generating analysis and
visualization. However, limitations on our visual systems as well as display devices have prevented us from
the rapid recognition of structures beyond three dimensions. Visualization approaches therefore play an
essentially role in visually conveying and interpreting high-dimensional structural information by utilizing
low-dimensional embeddings and abstractions: from DR to visual encoding, and from quantitative analysis
to interactive exploration [40]. We believe homology-preserving DR helps to expand the existing DR
toolset and encodes additional structural information of high-dimensional data for visual exploration.

Our second motivation is the availability of interesting datasets with nontrivial homology, in particular,
from imaging and signal processing. In studying the space of images, Lee et al. [34] have found that the
majority of high-contrast 3 by 3 patches are concentrated near a circle. Follow-up work by Carlsson et
al. [6] and others [73] has shown that a subspace of the space of natural image patches either exhibits
circular behavior or is topologically equivalent to a Klein bottle, depending on the patch size. In signal
processing, using delayed window embedding, a 1-dimensional signal can be encoded into a high-
dimensional point cloud for topological data analysis. Specifically, 1-dimensional homology (i.e. loop) of
such a point cloud captures the periodicity of the signal [48, 49].

Finally, we are motivated by the large collection of datasets that arise from robotics. Homological
concepts naturally arise in robotics from the perspective of motion planning, that is, a process that
aims to ”design a trajectory of robot states from a given initial state to a specified goal state through
a complex configuration space” [26]. Two trajectories are considered being topologically equivalent,
if the boundaries formed by both trajectories do not contain any obstacle. The notion of punctured
Euclidean space, that is, RD −O, occurs frequently in the configuration spaces of robots, where O
represent either the physical obstacles (such as humans, chairs, or other robots) that the robots need to
avoid in the 2- or 3-dimensional configuration spaces, or illegal states (such as all legs off the ground)
for the higher-dimensional configuration spaces [4]. Homological information can be used to cluster
and classify different classes of trajectories in complex configuration spaces and to find representative
(optimal) trajectory for each class [4]. We envision homology-preserving DR techniques could help
capture the nontrivial homologies in the environments for path planning and state planning. As part of
future work, we are interested in knowing how topology-inspired landmarks and skeletons (Section 5) can
be used as representative trajectories in the configuration space.

Contributions. The goal of this paper is to generalize topology preservation to homology preservation,
much as generalizing connectivity to the notion of homology. Given that distance preservation maintains
the geometric and therefore topological properties of the data with some sense of rigidity, this could be
the end of the story.

However, we present examples in the paper illustrating that we can achieve homology preservation
while at the same time maintaining (and sometimes even improving) the preservation of distances. Our
contributions are:

• We introduce a new class of homology-preserving DR techniques that combine the strengths of
landmark Isomap (L-Isomap) with the power of homology-preserving landmarks.

• For complex data such as circular manifolds, we provide a simple and fast procedure that can tear
those manifolds, while at the same time preserving as much homology as possible.

• We conduct experiments for homology-preserving manifold landmarking and manifold tearing to
evaluate their effectiveness.

Outline. We motivate our problem of interest in Section 2 with a naive interpretation of homology
preservation in the setting of linear projection. We discuss related work in Section 3 that covers topics
such as manifold landmarking, manifold tearing, and quality assessment of DR techniques. We introduce
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(b)

(c)

(d)

(e)

(a)

Figure 2: In search of homology-preserving linear projections for a bended figure eight example. (a)
Uniformly sample projection directions on a sphere. (b) The original 3-dimensional input point cloud. (c)-(e)
Three instances of the 2-dimensional linear embeddings, (c) being the optimal as it produces the lowest
degree-2 Wasserstein distortion.

homology-based measure for the assessment and comparison of DR techniques in Section 4. We detail a
novel landmark selection method for L-Isomap based upon data skeletonization, and describe a new class
of homology-preserving DR techniques in Section 5. We describe homology-preserving manifold tearing
in Section 6. We conclude with real-world examples (Section 7) and a discussion on future directions
(Section 8).

2 A Motivational Example Using Linear Projections
To motivate our research objective, we start with a naive interpretation of homology-preservation DR
using linear projects. Given a high-dimensional point cloud, we have created an interactive visualization
prototype, where we observe and quantify the results of DR using simple linear projections. We illustrate
the idea of homology preservation using a 3-dimensional point cloud sampled from two perpendicular
rings joined at a point, referred to as the bended figure eight in Figure 2(b).

We begin by sampling a number of projection directions uniformly from a sphere in Figure 2(a). Given
a particular projection direction, we use a couple of homology-centric criteria (detailed in Section 4)
to assess the quality of each linear embedding. Here, we focus on the preservation of 1-dimensional
homology. The optimal projection direction is marked by a red diamond in Figure 2(a), whereas Figure 2(c)
corresponds to the optimal 2-dimensional embedding. Figure 2(d) and (e) give two examples of not-so-
optimal embeddings that correspond to the blue and green projection directions in (a), respectively. Each
embedding shows a certain amount of deformation to at least one of the two loops.

It is clear from the visualization that the optimal linear projection direction tries to preserve the
shape of the two loops as much as possible, therefore producing the most optimal homology preserving
embedding.

3 Related Work
Dimensionality reduction. DR techniques can be studied following various taxonomies. For in-
stance, they are considered as linear (resp. nonlinear) methods if they produce low-dimensional linear
(resp. nonlinear) mapping of the input high-dimensional data that preserve certain features of interest.
They can be thought of as conducting convex or nonconvex optimizations, full or sparse spectral eigende-
compositions, global or local structure preservation; see [12, 66] for thorough reviews. We largely follow
the classification from [36] in terms of distance or topology preservation (see Section 1).

4



Quality assessment and visualization. To assess the performance of DR techniques, different
quality measures have been proposed that can be roughly classified as global- or local-based approaches.
The former quantifies the preservation of local neighborhoods/subregions, and the latter studies the
preservation of global shape of data. Global measures include Shepard diagram [55, 56], stress [31, 32],
and residual variance [64] (as described in Section 4), and local measures consist of rank-based criteria
such as co-ranking matrix [37], mean relative rank errors [37] and Spearman’s rho [60], normalization
independent embedding quality assessment [76], and many more [25].

On the other hand, the characteristics of various quality measures can be linked with fine-grained
visual analytics. For instance, point-wise quality measures can be augmented in the visualization to
highlight erroneous local regions [42].

Manifold landmarking. Our proposed strategy takes advantage of manifold landmarking, that is,
finding a subset of points along the manifold that captures its structural characteristics [39]. Manifold
landmarking is useful for dimensionality reduction, for example, in the case of landmark MDS and
landmark Isomap [13, 14]. It can also be employed to generate sparse manifolds for machine learning
tasks [43] or sparse matrices for semidefinite programming [71], as well as supervised learning [65].

Previous landmarking methods can be classified as geometric or statistical approaches. Geometrically,
landmarks can be selected randomly [13] or using maxmin methods [14]. Selection can focus on the
boundaries using minimum spanning tree, rather than randomly selected points or cluster centers [9].
Landmarks can also be chosen based on the minimum set cover problem [38,57]. In addition, modification
to existing landmark-based DR method such as L-Isomap can be done by introducing modifications to the
distance matrices involving landmarks and its related spectral problems [59, 68]. Statistically, manifold
landmarking utilizes regression [61], mixed-integer optimization [46], active learning [74], and Gaussian
processes [39].

Topology-Inspired data skeletonization. Compared to exiting landmarking approaches, our strat-
egy is one that is topological in nature. Our work utilizes advances in topology-inspired data skeletoniza-
tion, that is, the process of extracting the topological structure of data using a low-dimensional even
1-dimensional representation, in order to better interpret complex, noisy, nonlinear, and high-dimensional
data.

Data skeletonization can be broadly considered as a graph-extraction problem. The work in [28, 30]
develops the notions of principal curves and principal graphs, which are roughly smooth curves that pass
through the middle of a cloud of points. Metric graph reconstruction [1] also helps to skeletonize data
based on inspecting and classifying local neighborhoods.

Topology-inspired data skeletonization from [22, 44] are most relevant to our framework. Ge et
al. [22] give a framework to extract and simplify a 1-dimensional skeleton using the Reeb graph. Natali
et al. [44] introduce a Point Cloud Graph as a data abstraction that is a generalization of the Reeb
graph to arbitrary high-dimensional point clouds. Reeb graphs play a fundamental role in computational
topological, topological data analysis and shape analysis; see [5] for a survey.

In this paper, we extract a 1-dimensional skeleton (referred to as skeleton for the remaining of the
paper) from the input space based on an approximation of the Reeb graph. Compared to previous work,
our work is novel in the sense that it utilizes such a skeleton for the purpose of landmark section and DR.

Manifold tearing and loop detection. Most classic DR techniques do not perform well when the
data manifolds contain essential (i.e., non-contractable) loops, such as cylinders, tori or spheres. What
sometimes are referred to as loopy manifolds [41] are in fact manifolds with nontrivial homology. Such
manifolds typically cannot be embedded into the target space without introducing significant distortions.
Some recent efforts have been made to detect and cut essential loops in such manifolds.

Lee and Verleysen [35] introduce a two-stage tearing procedure: first, a k-nearest neighbor (kNN)
graph among the point cloud sample is used to represent the underlying space; second, a minimum
spanning tree (MST) or a shortest path tree (SPT) that contains no cycles is computed on the kNN graph;
Finally, edges that do not generate non-contractible cycles with more than 4 edges are reintroduced to
form the torn graph for downstream DR.

Our work differs from [35] significantly in the following sense. We use a topology-inspired data
skeleton that consists of landmarks and landmark connections to describe all candidate essential loops,
and employ a homological criterion to choose the proper loop to tear while preserving as much as possible
the homological characteristics of the data. Whereas other techniques cut all or a large number of loops,
we try to cut, roughly, as few loops as possible while preserving the remaining homology.
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4 Homology-Based Quality Assessment
4.1 Background
Before we present various homology-based criteria in assessing the quality of DR, we need to introduce a
few relevant topological notions such as homology and persistent homology [17], and a distance-based
evaluation criterion.

Homology and Betti numbers. Given a topological space X, the 0-, 1- and 2-dimensional homology
groups are denoted as H0(X), H1(X) and H2(X), respectively. Betti numbers bi count the number of
i-dimensional holes, and are used to distinguish spaces based on the connectivity across all dimensions.
Formally, it is defined as the rank of the i-dimensional homology groups, bi = rank(Hi(X)). For a torus,
b0 = 1, b1 = 2 and b2 = 1; this means that a torus has 1 connected components, 2 holes and 1 void.

Persistent homology. Simply put, persistent homology studies homology at multiple scales. As
illustrated in Fig. 3, we begin with a point cloud X equipped with a distance metric DX (i.e. Euclidean
distance). We study the homology of a sequence of spaces formed by a union of balls of increasing radius
t centered at the points. Using persistent homology, we investigate the homological changes within this
growing sequence of spaces indexed by time (this is referred to as a filtration).

t

(a)

(b)

2.5 3 3.7 4.2 5.63.2 4 5210

(c)

t=2.5 t=3 t=3.2 t=3.7 t=4.2 t=5.6t=0 t=2 t=5

Figure 3: Computing persistent homology of a point cloud and the barcode.

In Fig. 3(a), at time t = 0, each colored point is born (appears) as its own (connected) component. As
t increases, we focus on the important events when components merge with one another to form larger
components or tunnels. We begin by tracking the birth and death times of each component or tunnel
as well as its lifetime in the filtration. At t = 2.5, the green component merges into the red component
and dies (disappears); therefore the green component has a lifetime (i.e., persistence) of 2.5. At t = 3,
the orange component merges into the pink component and dies; therefore it has a persistence of 3.
Similarly, the blue component dies at t = 3.2 while the pink component dies at t = 3.7. At time t = 4.2,
the collection of components forms a tunnel; and the tunnel disappears at t = 5.6. The red component born
at time 0 never dies, therefore it has a persistence of ∞. We record and visualize the appearance (birth),
the disappearance (death), and the persistence of homological features in the filtration via persistence
diagrams [10] (Fig. 4), or equivalently, persistence barcodes [23]. A point p = (a,b) in the persistent
diagram of X records a homological feature that is born at time a and dies at time b. 0- and 1-dimensional
persistence diagrams, denoted as PD0(DX ) and PD1(DX ), captures the births and deaths of components
and tunnels, respectively. Equivalently in the barcode of Fig. 3(b), such a feature is summarized by a
horizontal bar that begins at a and ends at b.

Computationally, the above nested sequence of spaces can be combinatorially represented by a nested
sequence of simplicial complexes (i.e. collections of vertices, edges and triangles) with a much smaller
footprint, as illustrated in Fig. 3(c), see [18] for computational details.

Distance-based quality measure. To evaluate the fits of various DR techniques on comparable
grounds, Tenenbaum et al. [64] introduce the residual variance (RV ):

RV (X ,Y ) = 1−R2(DX ,DY ).

DY is the matrix of Euclidean distances in the low-dimensional embedding produced by a DR technique,
and DX is a best estimate of the intrinsic manifold distance for a given technique. In the case of Isomap,
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Figure 4: From left to right, 0- and 1-dimensional persistence diagrams.

DX corresponds to the geodesic distance matrix approximated by the graph distance matrix DG. For MDS,
it is the Euclidean distance from the input data. R is the standard Pearson correlation coefficient that
measures the linear correlation between all entries of DX and DY (that are reshaped into vectors). Such a
measure can also be used as a practical approach to select an appropriate neighborhood size for noiseless
and noisy data, where lower residuals indicate betterfitting solutions with less metric distortion [2].

4.2 Homology-Based Quality Measures
There have been a few recent works in the direction of a homology-based evaluation criterion for DR. Paul
and Chalup [47] compare the Betti numbers (b0 and b1) of spaces before and after DR and study their
convergence as the number of sample points increases. Rieck and Leitte [52] present an evaluation scheme
based on persistent homology. Specifically, density functions of the input space and the embedding space
are estimated based on neighborhood graphs in both spaces; then persistence diagrams are computed for
these density functions. The global quality of each embedding is assessed by computing the degree-2
Wasserstein distance between the two persistence diagrams. The local quality at each embedded point is
estimated based on a mean matching cost between the diagrams.

For the purpose of this paper, we employ a few homology-based quality measures described below.

Wasserstein distance. Our first criterion is the Wasserstein distance for persistent homology [11].
Recall from the previous section, we could obtain a i-dimensional persistence diagram PDi(DX ) from a
point cloud X described by a pair-wise distance matrix DX . Let DX and DY denote the distance matrices
describing the structure relations among points within the high-dimensional input space and those within
the low-dimensional embedding, respectively.

To measure similarities between the persistent homology of space X and Y , for a fixed dimension
i, we define the degree-p Wasserstein distance as the Wasserstein distance between the i-th persistence
diagrams of DX and DY :

Wp(X ,Y ) =
[

inf
η

Σx ‖x−η(x)‖p
∞

]1/p
,

where the infimum is over all bijections η : PDi(DX )→ PDi(DY ), and the sum is over all points
x ∈ PDi(DX ) [70]. Note that taking the limit p→ ∞ yields the bottleneck distance [50].

In the context of this paper, we always use p = 2, leading to the degree-2 Wasserstein distance measure,
denoted as WD. Depending on the chosen dimension i, WD0 and WD1 roughly capture the homological
distortions of 0- and 1-dimensional features before and after DR. For the assessment of Isomap and
L-Isomap, DX is the Euclidean distance matrix in the input space and DY is the Euclidean distance matrix
in the embedding.

Similarly, we could consider the bottleneck distance by taking the limit p→∞, W∞(X ,Y )= infη Σx ‖x−η(x)‖
∞
.

As illustrated in Figure 2, we find the (near) optimal linear embedding by minimizing the Wasserstein
distance measure (resp. bottleneck distance measure). For the remaining of this paper, we use the
Wasserstein distance.

Persistent Betti numbers. Betti numbers count the number of homological features and can be used
as summary statistics to differentiate topological spaces. However, Betti numbers alone do not differentiate
between significant and noisy homological features. We use the persistent Betti numbers (PB) as a way
to quantify how much homological information is preserved during the DR. Let PBi denote the number
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of significant i-dimensional homological features, that is, the number of points in the i-dimensional
persistence diagram that is above a certain threshold that separates features from noise.

Finding a suitable threshold requires checking the separation of points in the persistence diagram [51].
Significant features can be extracted from the persistence diagram if it has an empty band (of a certain
width) parallel to the diagonal that does not contain any points [8]. More sophisticated methods from
statistics based on bootstrapping can be used to improve the threshold estimation that separate signals
from noise, based on the notion of a confidence band [20], this is left to the future work.

In this paper, we use PB1 as a rule of thumb to assess the quality of DR in terms of its preservation of
significant 1-dimensional features.

Comparisons to prior work. We compare our DR framework with the prior work that use homology-
based quality measures [47, 52]. Although it is generally true that data with “more holes require higher
sample sizes” [47], we demonstrate (in Section 7) that, by using carefully selected landmarks, we can
preserve holes even with a small number of landmark points.

Comparatively speaking, there are a few critical differences between our work and the work in [52].
The global and local quality measures from [52] deal only with 0-dimensional while our proposed
measure focuses on 1-dimensional homology preservation. Most importantly, [52] uses homology-based
quality measures for the evaluation of existing DR techniques, while our work is actively searching and
developing new DR techniques that maximize homology-based quality measures via manifold landmarking
and tearing.

5 Homology-Preserving Manifold Landmarking
We begin this section with a review of the nonlinear DR techniques known as the Isomap [64] and
landmark Isomap (L-Isomap) [13]. We then discuss homology-preserving landmark selection based on
the Reeb graph and its discrete approximation. We summarize the pipeline for a new class of techniques
by combining the utilities of homology-preserving landmarks with the efficiency of landmark-based DR.

5.1 Isomap and L-Isomap
Isomap. Suppose the original input data contains N samples in D dimensions, X ∈ RD×N . Isomap
embeds the points onto a lower dimensional space Y ∈ Rd×N (d < D) while preserving geodesic distances
between all input points [64]:

1. Construct neighborhood graph. A weighted, undirected k-nearest neighbor (kNN) graph G is
constructed over all data points, where an edge between a point xi ∈ X and its neighbor x j ∈ X is
assigned a weight that represents the Euclidean distance between them. An appropriate k can be
chosen based on the residual variance [2, 64].

2. Compute shortest paths. All pairwise shortest paths between points in the KNN graph G are
computed to approximate the geodesic distances between them, which leads to an N×N graph
distance matrix DG.

3. Construct a d-dimensional embedding. Classical MDS is applied to the above graph distance matrix
DG to obtain a low-dimensional embedding.

Isomap suffers from two computational inefficiencies: calculating the shortest-paths distance matrix and
eigenvalues within MDS. The former has a complexity of O(kN2 logN) using Dijkstra’s algorithm with
Fibonacci heaps, while the latter takes O(N3) [13].

L-Isomap. L-Isomap [13] addresses the two inefficiencies of Isomap at once. It is based on the
landmark MDS (L-MDS) [14]:

1. Construct neighborhood graph (same as in Isomap).

2. Select landmarks. n-points (n� N) from X are randomly selected to be landmark points.

3. Compute shortest paths. Compute the shortest paths from each data point to the landmarks, resulting
in a n×N geodesic distance matrix. Also compute the n×n shortest paths distance matrix between
pairs of landmarks.
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4. Apply L-MDS to obtain d-dimensional embedding. First, apply classical MDS to the landmarks
only, embedding them in Rd using as input the n×n distance matrix between pairs of landmarks.
Second, the embedding coordinates for the remaining data points are computed based on a fixed
linear transformation of their geodesic distances to the landmarks [58].

5. PCA normalization (optional). This normalization is to re-orient the axes of the embedding to
reflect the overall distribution, rather than the distribution of the set of landmarks; see [13, 14] for
details.

L-Isomap leads to enormous savings when n � N: Computing the shortest paths in step 3 takes
O(knN logN) using Dijkstra’s algorithm and L-MDS in step 4 runs in O(n2N) [13].

Here, to differentiate different versions of L-Isomap based on various landmark selection schemes,
L-Isomap using randomly selected landmarks is referred to as the random L-Isomap, while the one using
homology-preserving landmarks in the next section is called the homology L-Isomap.

5.2 Homology-Preserving Landmark Selection
Our work uses the idea of a data skeleton based on the Reeb graph for the purpose of landmark selection in
DR. Although Reeb graphs have been used in the context of shape abstraction and comparison [22, 44], to
the best of our knowledge this is the first time they have been used in the context of landmark-based DR.

In this section, we first review relevant topological notions and computations for Reeb graphs. We
then describe our landmark section algorithm using a skeleton based on the Reeb graph.

Reeb graph. Let f : X → R be a continuous function defined on a manifold X . The level set of f at a
value a ∈ R is defined as f−1(a) = {x ∈ X | f (x) = a}. The Reeb graph of f is constructed by identifying
every connected component in a level set to a single point [22].

Extracting homological skeleton Given point cloud data, the domain can be approximated by a
neighborhood graph (such as the kNN graph or the ε-neighborhood graph) among the data points, and
efficient algorithms exist [22, 27, 44] to approximate the Reeb graph in such a discrete setting.

In this paper, we employ a mapper-based implementation to approximate the Reeb graph [54] as our
homology-preserving data skeleton, refered to as the homologicla skeleton (or simply skeleton). The
mapper algorithm [62] approximates the Reeb graph by considering the connected components of interval
regions (i.e. f−1(a,b)) instead of the connected components of level sets (i.e., f−1(a)).

We start with a function f : X → R defined on a point cloud X , and a cover U of f (X) consisting
of finitely many open intervals U = {(ai,bi)}n

i=1. To specify such as cover, we pick two resolution
parameters n and p, where n is the number of intervals and p is the percentage of overlap between a
pair of adjacent intervals. Pulling back the cover U through f gives an open cover of the point cloud X ,
which is then refined into a connected cover by splitting each cover element into various clusters using
a user-defined clustering algorithm [7]. Such a cover of X is denoted as V = f ∗(U ). In this paper, we
use DBSCAN [19] for clustering. It is a widely used density-based clustering algorithm that groups
together points that are closely packed together; the choice of clustering algorithm is not essential to our
experiments.

The 1-dimensional skeleton of the nerve of V is considered a discrete approximation of the Reeb
graph of f on X ; it is referred to as the homological skeleton for the remainder of the paper. Such a
skeleton is a graph with nodes representing the elements of V , and edges representing the pairs of cover
elements in V with nonempty intersections.

In the original mapper algorithm, the node of a skeleton represents abstractly a cover element of
the point cloud, that is, a cluster of points in X . However, in our setting, the nodes of a homological
skeleton are considered as the landmarks for DR; therefore, we choose the centroid of each cluster as its
representative. The centroid of each cluster is part of the original point cloud, and serves as a landmark
for L-Isomap.

Extracting homological skeleton does not increase the asymptotic complexity of L-Isomap. In our
experiments, the running time of H-L-Isomap is comparable with that of R-L-Isomap.

Filter function. The key idea behind the Reeb graph is that it explores the topology of a space by
analyzing the behavior of a possibly varying real-valued function (referred to as a filter function) defined
on it [5]. Reeb graphs encode topological information on data in a 1-dimensional structure, disregarding
the dimension of the data in the ambient space [5]. The data can be regarded as being parameterized with
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respect to the filter function being used, in other words, the filter function “plays the role of the lens”
through which we look at the properties of the data [5].

Different filter functions lead to different insights into the point cloud. It remains an open question as
how to choose an appropriate filter function beyond a best practice or a guesstimation. Commonly used
options include height functions, distances from the barycentre of a space, surface curvature, integral or
average geodesic distances and geodesic distances from a source point in the space [5].

In this paper, we use mainly the geodesic distance from a source point as the filter function, referred to
as the distance-to-the-base-point or simply the DT B function. Such a filter function has shown desirable
properties in capturing the 1-dimensional homological information of the space [5, 22]. We demonstrate
via experiments in Section 7 that a skeleton induced by DT B is homology-preserving for landmark-based
DR; it also serves as a compact and informative summary for guiding the manifold tearing process.

Landmark selection pipeline. Given a point cloud X in RD, we now summarize our homology-
preserving landmark selection pipeline and its combination with L-Isomap (referred to as the homology
L-Isomap):

1. Construct neighborhood graph (same as Isomap). Let G denote the resulting kNN graph.

2. Compute a filter function f on X . f captures certain desirable structural information of X suitable
for DR. In our experiments, we use DT B as the filter function and a base point is chosen from
extreme points or barycenters (see Section 7 for details). DT B can be computed based on G from a
given base point.

3. Compute skeleton and landmarks. Compute a discrete approximation of the Reeb graph of f as a
homological skeleton, using the mapper algorithm. The cover U of f (X) is given by user-specified
resolution parameters n and p. The nodes of the skeleton correspond to clusters of points in X ; the
cluster centroids are chosen as the landmarks for L-Isomap, denoted as XL ⊆ X .

4. Apply L-Isomap. Replace randomly generated landmarks (step 2 of L-Isomap) with the homology-
preserving landmarks (a.k.a. homological landmarks) XL and apply the rest of L-Isomap algorithm.

The above pipeline is not restricted to L-Isomap. We believe it can be easily extended to other graph-based
DR techniques [75].

A simple example. Our pipeline is illustrated with a simple example in Fig. 5. We begin with a noisy
point cloud with 1983 points sampled from a swiss roll with an irregular, hard-to-spot hole in the middle.
First, a DT B filter function is computed with respect to an extremal base point. Second, a homological
skeleton connecting a set of 22 landmarks is obtained using the mapper approximation. Third, we apply
L-Isomap using these homological landmarks in the skeleton (black stars). In Fig. 5, the black homological
skeleton is highlighted in the input space, as well as the Isomap and L-Isomap embeddings, which clearly
captures the location of the significant hole in the data.

This simple example demonstrates that the homological L-Isomap has the potential to preserve as
much as possible the 1-dimensional homological feature even with a smaller number of landmarks than
the Random L-Isomap algorithm (roughly n = O(

√
N)). However, given the dataset contains a single loop,

homological L-Isomap does introduce distance distortion away from the loop. Surprisingly, homological
L-Isomap is shown to outperform both Isomap and random L-Isomap in certain datasets using the widely
accepted residual variance (see Section 7).

6 Homology-Preserving Manifold Tearing
Complex data that contain essential loops may or may not be embedded into low-dimensional space
without introducing significant distortions. An alternative and complementary approach for homology-
preserving DR is through manifold tearing. In this section, we give a simple and fast manifold tearing
procedure guided by the homology-preserving skeleton of the point cloud data. Different from prior work,
our procedure tries to cut as few loops as possible, using homology-based quality assessment (described
in Section 4) while at the same time preserving as much as possible the remaining homological features.

Suppose we have a point cloud equipped with a pre-computed homology-preserving skeleton (see
Section 5). Our homology preserving tearing process is as follows:

• Construct neighborhood graph (same as Isomap). The neighborhood graph is denoted as G. A
slightly larger k can be chosen to account for the tearing process (optional).
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Figure 5: A swiss roll with a hole example. (a) The original point cloud is colored by the distance to a base
point function. The base point is marked by a red star. (b) Isomap embedding. (c) Homological L-Isomap
embedding. The homological skeleton is highlighted in black.

Figure 6: Results without and with manifold tearing for Airfoil1 (top) and Bcsstk31 (bottom). (a)-(b) original
point clouds with marked cutting location. (c)-(d) Isomap embeddings without tearing. (e)-(f) Isomap
embedding with tearing.

• Tear the neighborhood graph. A cut plane can be specified based on the homology-preserving
skeleton. Specifically, a cut location can be specified on an edge of the skeleton, which then defines
a cut plane that is orthogonal to the edge to be cut. An edge that spans a pair of nodes on the
opposite side of the cut plane is removed from G, resulting a new graph G′.

• Compute shortest paths. Compute shortest paths between all nodes in G′ and obtain a geodesic
distance matrix DG′ .

• Apply Isomap to DG′ .

The above process is exploratory in nature, that is, we can use different evaluation criteria of the resulting
embeddings to rank the potential cut locations. In this paper, we use the number of significant homology
classes as the criterion. In addition, we envision such a process could be embedded into any interactive
visualization framework for DR that involves human-in-the-loop.

7 Results
We present examples in this section illustrating that we can achieve homology preservation while at the
same time maintaining (and sometimes improving) distance preservation. We explore complementary
procedures with a common goal: homology-preserving manifold landmarking and manifold tearing, both
aided by the use of a small homological skeleton. Such a skeleton is compact, fast to extract and does not
introduce significant distance distortions.
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Figure 7: Homology-based quality assessment of DR for Octa (row 1), Fishing Net (row 2) and 4elt (row 3).
For each each, from left to right: persistence diagrams for the original data, Isomap embedding, random
L-Isomap embedding and homological L-Isomap embedding.

octa fish. 4elt cyl.-3 cyl.-5 air. bcsstk mice
|X | 2994 6188 7807 2K 2K 8034 8030 674
|XL| 76 63 18 54 82 60 53 18

Table 1: The number of landmarks |XL| for each dataset of size |X |.
7.1 Data
For manifold landmarking, we demonstrate our technique with datasets that contain nontrivial homology.
Simplify put, datasets with loops are more likely to benefit significantly from our technique.

Octa is a point cloud sampled from a mesh of octahedron handles. The original mesh contains up
to 41K vertices. Fishing Net is a synthetic, noisy point cloud sampled from a “S”-shaped surface that
contains 3×11 irregular holes. 4elt is derived from a 3-dimensional embedding of the 4elt graph used
in [21]. The original graph from [69] contains 15606 nodes and 45878 edges, and is a mesh created to
study fluid flow around a 4-element airfoil. As stated in [21], the original graph “exhibits extreme variation
in the spatial density of nodes”.

Finally, Mice dataset contains 300-dimensional point clouds derived from time-varying temperature
measurements of pregnant mice [63]. The point cloud is generated by standard delayed window embedding
with a window size of 300 in signal processing. We run our experiment on a particular pregnant mouse
that is not jet-lagged, and hope to detect and preserve 1-dimensional homological features in the input
space that capture periodicity in the signal.

For manifold tearing, we use datasets that contain essential loops for demonstration. Cylinder-3
is a point cloud sampled from a cylinder with 3 holes carved out, and Cylinder-5 is created similarly.
Airfoil1 comes from a 2-dimensional finite element problem under the AG-Monien Matrix group from the
SuiteSparse Matrix Collection [15]. Bcsstk31 is derived from a 3-dimensional embedding of a stiffness
matrix for automobile component [16].

7.2 Dimensionality Reduction with Manifold Landmarking
Results and evaluation with persistence diagrams. For each dataset, 2-dimensional embeddings
obtained using homological L-Isomap are compared with Isomap and random L-Isomap in Fig. 1.
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Figure 8: Homological skeletons for Octa (left) using 21 landmarks, Fishing Net (middle) and 4elt(right).

Evaluation using persistent Betti numbers are illustrated by the 1-dimensional persistence diagrams in
Fig. 7. We determine the number of persistent (significant) features by looking at the separation between
points in the diagram. Suppose each dataset contains m persistent features in the original point cloud, then
top m features with the highest persistence are marked in red within the persistence diagram associated
with each embedding.

For Octa, as shown in Fig. 7 (row 1), the original data contains 8 significant features, 4 of which
(colored red) correspond to the visible loops via embeddings (4 other features are the interior tunnels within
each handle). All 4 of the red features are preserved (i.e. they remain significant, that is, well-separated
from the diagonal of the persistence diagram) using homological L-Isomap. Isomap preserves 3 loops
while random L-Isomap preserves only 2. For more detailed analysis, it is remarkable to see that using
only 21 landmarks, the homological skeleton is able to summarize the homological features reasonably
well (Fig. 8, left).

For Fishing Net, as shown in Fig. 7 (row 2), the original data has 33 significant features in the
persistence diagram; and both Isomap and homological L-Isomap perform comparatively in terms of
preserving the shape of each feature in the embeddings. However, homological L-Isomap uses only 66
points as landmarks (roughly 1% of the size of the point cloud), and is therefore more computationally
efficient. Furthermore, its homological skeleton in Fig. 8 (middle) captures the underlying homological
feature pretty well.

For 4elt, as shown in Fig. 7 (row 3), the original data contains 4 significant features; 3 of which are
readily visible in the 3-dimensional embedding of its homological skeleton in Fig. 8 (right). Both Isomap
and homological L-Isomap preserve these features reasonably well, while random L-Isomap preserves
only 2. In addition, homological L-Isomap does slightly better in preserving the shape of a couple of
features.

For Mice, we combine the results of DR with 1-dimensional persistence diagrams in Fig. 9. There
are 2 significant features in the original 300-dimensional input space. Such features likely correspond
to periodicity in the temperature profile of the mice that corresponds to circadian or ultradian rhythms.
Both Isomap and homological L-Isomap perform comparatively in terms of preserving the most dominant
feature, while homological L-Isomap only uses a small fraction of the points as landmarks. On the other
hand, random L-Isomap is able to detect the significant feature but does not preserve its shape as well.

Quality assessment with residual variance. We also assess the quality of DR using quality
measures introduced in Section 4, in particular, the RV measure. WD0 and WD1 measures are also
computed (but not reported here), as they are partially encoded by persistence diagrams in the previous
section.

For Octa, we evaluate the quality of each embedding using the RV measure by varying the number
of landmarks, see Fig. 10. As the number of chosen landmarks increases, we are interested in how well
homological L-Isomap preserves distances, when compared with Isomap and random L-Isomap. For
a fixed landmark size, the blue box plot corresponds to the RV measures for 20 instances of random
L-Isomap, each drawing landmarks randomly from a fixed point cloud: solid blue line in the box plot is
the median, dotted blue line is the mean, the boundary of the box is the standard deviation, and black
hollow circles are outliers. Solid red circles are RV measures for homological L-Isomap (denoted as
Topology L-Isomap in the figure), while solid green circles are for Isomap.

A surprising observation is that homological L-Isomap outperforms Isomap and random L-isomap in
terms of distance preservation, when the number of landmarks is small (below 100). In fact, homological
L-Isomap beats random L-Isomap with just 21 landmarks and it outperforms Isomap with 42 landmarks.
The optimal landmark size that achieves both computational efficiency and quality is at around 76
landmarks. When the number of landmarks goes beyond 150, homological L-Isomap does not seem to
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Figure 9: For Mice, persistence diagrams for original data (a), Isomap embedding (b), random L-Isomap
embedding (c) and homological L-Isomap embedding (d) are combined with DR results.

Figure 10: Quality assessment of embeddings using residual variance for Octa.

have an obvious advantage over other methods. In fact, at 203 landmarks, homological L-Isomap performs
comparably with Isomap. This is not surprising, with a large number of landmarks, both L-Isomap and
Isomap preserve the geometry of the data equally well.

We also compare several datasets, the swiss roll with a hole, Fishing Net and Octa, using their re-
spective optimal landmark size, in FIg. 11. Notice that homological L-Isomap outperforms the others
for both Fishing Net and Octa, while it does not do well with Swiss roll with a hole. Intuitively, homo-
logical L-Isomap performs best when the data is complex, and has nontrivial homological features. In
this case, both Fishing Net and Octa are a lot more complex and homologically interesting than the
Swiss roll with a hole.

7.3 Dimensionality Reduction with Manifold Tearing
Manifold tearing results are shown in Fig. 14 for Cylinder-5 and Fig. 6 for Airfoil1 and Bcsstk31 respec-
tively. See Fig. 12 and Fig. 13 for quality assessment using persistence diagrams.

Given a homological skeleton for Cylinder-5, we apply multiple cutting options to the skeleton and
rank the resulting embeddings by homology preservation. As shown in Fig. 14, without manifold tearing,
the Isomap embedding destroys 5 out of 6 homological features, while optimal tearing preserves 5 out of
6 persistent homological features.

While Isomap preserves reasonably well the 3 persistent features for Airfoil1, manifold tearing further
preserves 2 of the 3 homological features if we are willing to destroy one of them (Fig. 6 top, and Fig. 13).
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Figure 11: Quality assessment of embeddings using residual variance for different datasets, including
Swiss roll with a hole, Fishing Net and Octa.

Figure 12: Homology based quality assessment of DR for Cylinder-5.

For the case of Bcsstk31, we can focus on manifold tearing by cutting a short edge in the homological
skeleton of Bcsstk31 as shown in Fig.15, therefore “open up” the space further to reveal more geometric
structures of the data.

8 Discussion
We demonstrate in this paper that we can achieve homology preservation while maintaining and possibly
improving distance preservation using homological L-Isomap and (almost) homology-preserving manifold
tearing. Many research questions remain. In particular, we are interested in exploring higher-dimensional
homological skeletons [67] for DR to preserve homological features beyond 1-dimensions.

References
[1] M. Aanjaneya, F. Chazal, D. Chen, M. Glisse, L. Guibas, and D. Morozon. Metric graph recon-

struction from noisy data. International Journal of Computational Geometry and Applications,
22(04):305–325, 2012.

[2] M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and J. C. Langford. The isomap
algorithm and topological stability. Science, 295(5552):7, 2002.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003.

[4] S. Bhattacharya, D. Lipsky, R. Ghrist, and V. Kumar. Invariants for homology classes with application
to optimal search and planning problem in robotics. Annals of Mathematics and Artificial Intelligence,
67(3-4):251–281, 2013.

[5] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and
applications. Theoretical Computer Science, 392:5–22, 2008.

[6] G. Carlsson, T. Ishkhanov, V. De Silva, and A. Zomorodian. On the local behavior of spaces of
natural images. International journal of computer vision, 76(1):1–12, 2008.

15



Figure 13: Homology based quality assessment of DR for Airfoil1.

Figure 14: Results without and with manifold tearing for Cylinder-5. (a) Original point cloud. (b)
Homological skeleton with 3 cutting options colored red, purple and green. (c) Isomap embedding without
tearing. (d) Partial tearing with the red option. (e) Non-optimal tearing with purple option. (f) Optimal
tearing with the green option.
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