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A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set 
are given with fixed positions in the plane and the mobile vertices of the other partition, 
together with the edges, must be added to the drawing without any restriction on their 
positions. We assume that G is planar and study the problem of finding a planar straight-
line drawing of G . We show that deciding whether G admits such a drawing is NP-hard 
in the general case. Under the assumption that each mobile vertex is placed in the convex 
hull of its neighbors, we are able to prove that the problem is also in NP. Moreover, if the 
intersection graph of these convex hulls is a path, a cycle or, more generally, a cactus, the 
problem is polynomial-time solvable through a dynamic programming approach. Finally, 
we describe linear-time testing algorithms when the fixed vertices are collinear or when 
they lie on a finite set of horizontal levels (lines) and no edge can intersect a level except 
at its fixed vertex.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the following problem. Let G = (V f , Vm, E) be a planar bipartite graph such that the vertices in V f , 
called fixed vertices, have fixed distinct locations (i.e., points) in the plane, while the vertices in Vm , called mobile vertices, 
can be freely placed (here we stress that by mobile vertex we do not mean a vertex that dynamically moves over time, 
but a vertex whose position can be freely chosen). Does G admit a crossing-free drawing � with straight-line edges? We 
assume that each vertex of G is drawn in � as a distinct point in the plane. We refer to G as an FM-bigraph and to � as a 
planar straight-line drawing of G .

Fig. 1 shows two different instances of our problem, both having the same set of four fixed vertices, colored black (the 
graph of each instance is planar and bipartite). The FM-bigraph in Fig. 1(a) has three mobile vertices (colored white) and 

✩ An extended abstract of this research has been published in the proceedings of the 25th International Symposium on Graph Drawing and Network 
Visualization, GD 2017.
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Fig. 1. Two instances of our problem with fixed vertices in black and mobile vertices in white: (a) positive instance; (b) negative instance (any placement 
of the mobile vertices causes at least one edge crossing).

admits a planar straight-line drawing. The FM-bigraph in Fig. 1(b) has one more mobile vertex, which makes it impossible 
to find a planar straight-line drawing. For example, the placement of the mobile vertices showed in the figure requires at 
least one edge crossing, and it can be easily proven that this is true for any other placement.

Besides its intrinsic theoretical interest, our problem is motivated by the following practical scenario. Fixed vertices 
represent geographic locations and each mobile vertex is an attribute of one or more locations. One wants to place each 
mobile vertex as a label in the plane and connect it to its associated locations, while guaranteeing a “readable” layout. We 
interpret readability in terms of planarity and straight edges, motivated by several studies that show how edge crossings 
and edge bends are among the most important parameters that negatively affect the readability of a graph layout (see, e.g., 
[35,36]). Additional aesthetic criteria that can be studied and that are not considered in this paper are, for example, angular 
resolution, edge length, and drawing area (see, e.g., [11,37]).

Contribution. The main results of this paper are as follows.

i. We prove that deciding whether an FM-bigraph G admits a planar straight-line drawing is NP-hard. In a broader 
scenario that allows edge bends, the same hardness technique is used to prove that deciding if G admits a planar 
drawing with at most k ≥ 0 bends per edge is at least as hard as deciding if a planar graph admits a planar drawing at 
fixed vertex locations, with at most 2k + 1 bends per edge.

ii. If all fixed vertices of G are collinear, the existence of a planar straight-line drawing of G can be tested in linear time. 
More in general, assuming that the fixed vertices are distributed along (i.e., covered by) a finite set of horizontal levels 
(lines), we can decide in linear time the existence of a planar straight-line drawing of G , in which no edge crosses a 
level and no mobile vertex lies on a level. Clearly, since there always exists a finite set of horizontal levels that covers 
all the fixed vertices, this corresponds to finding a planar straight-line drawing of G where no edge intersects a level 
except at its fixed vertex.

iii. Since it is difficult to discretize the problem in the general case [17,33], we investigate the scenario in which each 
mobile vertex is restricted to lie in the convex hull of its neighbors. This is reasonable in practice, as the user may 
expect that each attribute is placed in a sort of “barycentric” position with respect to its associated locations. For this 
scenario, we prove that testing the existence of a planar straight-line drawing is a problem in NP. With a reduction 
to a combinatorial problem, which is of its own independent interest but still NP-hard in its general form, we obtain 
polynomial-time solutions when the intersection graph of the convex hulls is a path, a cycle or, more generally, a cactus.

Notation. We assume familiarity with basic graph theoretic concepts (see, e.g., [19]). For standard definitions on planar 
graphs and drawings, we point the reader to [11,23]. We denote an FM-bigraph by a pair 〈G, φ〉, where G = (V f , Vm, E)

is a bipartite planar graph and φ : V f → R2 is a function that maps each vertex v ∈ V f to a distinct point pv = φ(v). 
We denote by n f and nm the number of fixed and the number of mobile vertices of G , respectively, i.e., n f = |V f | and 
nm = |Vm|. By n we denote the total number of vertices of G , i.e., n = n f + nm . A planar straight-line drawing of 〈G, φ〉 is a 
geometric representation of G such that: (i) The vertices of G are mapped to distinct points of the plane and each vertex 
v ∈ V f is mapped to φ(v); (ii) the edges of G are drawn as straight lines; (iii) no two edges intersect except at their 
common end-vertices.

Structure. The remainder of the paper is structured as follows. In Section 2 we discuss the main literature related to our 
problem, by highlighting similarities and differences with our research. In Section 3 we prove the NP-hardness of testing 
the existence of planar straight-line drawings of FM-bigraphs and present a linear-time algorithm for fixed vertices on one 
or more parallel levels. In Section 4 we describe the results for the scenario in which each mobile vertex is constrained to 
lie in the convex hull of its neighbors. Conclusions and open problems are in Section 5.

2. Related work

Our problem is related to several problems addressed in the literature, but it also has substantial differences from all of 
them. In the following, we give a short overview of the most relevant ones.
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Point labeling. A close connection is with the problem of labeling a given set of points in the plane (see, e.g., [31,39]), 
because mobile vertices can be regarded as labels for the fixed vertices (points). Similarly to our setting, in the 
many-to-one boundary labeling problem [3,26] each label can have multiple associated vertices and is visually con-
nected to them by edges. However, in the boundary labeling problem, the edges are drawn as chains of horizontal 
and vertical segments (which may partially overlap) and all the labels are placed outside a rectangular region that 
encloses all the vertices. Variants of the boundary labeling problem where each fixed vertex is associated with 
exactly one label have also been studied (see, e.g., [2,4,25]). Note that, in the point labeling problem, labels are 
geometric shapes of non-empty area, while we model mobile vertices as points.

Partial drawings. Our problem is a special case of the problem of extending a partial drawing of a (not necessarily bipartite) 
planar graph G to a planar straight-line drawing of G . This problem is NP-hard in general [33] and polynomial-time 
solvable for restricted cases [9,14,20,27,38].

Point-set embedding. In a point-set embedding problem, a planar graph with n vertices must be planarly mapped onto 
a given set of n points, with or without a predefined correspondence between the vertices and the points (see, 
e.g., [1,8,12,13,24,32]). Thus, in all settings of the point-set embedding problem, each vertex can only be mapped 
to a finite set of points. The results in [1,32] imply that any n-vertex planar FM-bigraph admits a planar drawing 
in which each edge is a poly-line with O (n) bends. Indeed, [1,32] prove that any n-vertex planar graph can be 
planarly mapped onto any set of n points, with given correspondences, using a linear number of bends per edge 
(which is also necessary in some cases, even for bipartite graphs). Hence, for a given FM-bigraph, one can place 
the mobile vertices anywhere so to realize a planar drawing, with a possibly high number of bends per edges.

Constrained drawings of bipartite graphs. Misue [29] proposed a model and a technique for drawing bipartite graphs such 
that the vertices of a partition set, called anchors, are evenly distributed on a circle. Anchors are similar to fixed 
vertices in our setting, but the order of the anchors in Misue’s model can be freely chosen. Extensions to the 3D 
space and to semi-bipartite graphs have been subsequently presented [22,30]. Finally, several papers study how to 
draw a bipartite graph such that the vertices of each partition set are on a line or within a specific plane region 
(see, e.g., [5,6,16]). In these scenarios, however, the vertices do not have predefined locations.

3. NP-hardness and fixed vertices on parallel levels

In this section we first prove the hardness of deciding whether an FM-bigraph admits a planar straight-line drawing. 
Then, we describe a linear-time testing algorithm when the fixed vertices lie on one or more parallel levels and we look for 
a planar straight-line drawing where no edge intersects a level except at its fixed vertex.

NP-hardness. Our NP-hardness proof uses a reduction from the 1-bend point set embeddability with correspondence prob-
lem (or 1-BPSEWC, for short), which has been proven to be NP-hard by Goaoc et al. [17]. Problem 1-BPSEWC is defined as 
follows: Given a planar graph G = (V , E), a set S of |V | points in the plane, and a one-to-one correspondence ζ between V and S, is 
there a planar drawing of G with at most one bend per edge and such that each vertex v is mapped to point ζ(v)?

Theorem 1. Deciding whether an FM-bigraph admits a planar straight-line drawing is NP-hard, even if each mobile vertex has degree 
at most two.

Proof. Let 〈G = (V , E), S, ζ 〉 be an instance of 1-BPSEWC. We construct an instance 〈G ′ = (V f , Vm, E ′), φ〉 of our FM-bigraph 
problem:

– V f = V , φ = ζ , and
– for each edge e = (u, v) ∈ E , define a corresponding vertex we ∈ Vm and two edges (we, u), (we, v) in E ′ .

Clearly, 〈G ′, φ〉 can be constructed in linear time. Also, G has a drawing � with at most one bend per edge that respects 
ζ if and only if G ′ has a planar straight-line drawing �′ that respects φ. To see this, observe that the position of a bend 
along an edge e = (u, v) of � corresponds to the positions of the mobile vertex we in �′; if e has no bend, we is drawn 
anywhere along the segment uv . �

We observe that the reduction used in Theorem 1 can be used to prove a hardness result for the more general scenario 
in which we allow up to k ≥ 0 bends per edge in a planar drawing of an FM-bigraph. Namely, this reduction can be applied 
without any modifications to prove that, for any k ≥ 0, deciding whether an FM-bigraph G admits a planar drawing with at 
most k bends per edge is at least as difficult as the (2k + 1)-BPSEWC problem, where up to (2k + 1) bends per edge are 
allowed. We summarize this observation in the following theorem.

Theorem 2. For any given integer k ≥ 0, deciding if an FM-bigraph admits a planar drawing with at most k bends per edge is at least 
as hard as the (2k + 1)-BPSEWC problem.
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Fig. 2. (a) A star of mobile vertices of degree one attached to the same fixed vertex u. (b) The extremal vertices v0 and vh = v4 can be made vertices of 
degree two by connecting them to two dummy fixed vertices ul and ur close to u. The other mobile vertices attached to u are temporarily removed and 
trivially reinserted in the drawing at the end of the drawing algorithm.

Fixed vertices on parallel lines. We first consider the special case in which all the fixed vertices of an FM-bigraph 〈G, φ〉 are 
collinear. We describe a linear-time algorithm to test whether 〈G, φ〉 admits a planar straight-line drawing and to compute 
such a drawing if the test is positive. The techniques used in this scenario are then extended to the case of fixed vertices 
on multiple horizontal lines.

Lemma 3. Let 〈G = (V f , Vm, E), φ〉 be an n-vertex FM-bigraph such that all the vertices of V f are collinear. There exists an O (n)-time 
algorithm that tests whether 〈G, φ〉 admits a planar straight-line drawing and that computes such a drawing if the test is positive.

Proof. Assume w.l.o.g. that all the vertices of V f lie on a horizontal line �. In any planar straight-line drawing of 〈G, φ〉, 
we can assume that every vertex w ∈ Vm is either above or below �. Indeed, if w lies on � then w has degree either one 
or two, and in the latter case it is incident to two consecutive vertices of V f along �. In fact, we can always slightly move 
w above or below � without changing the planar embedding of the drawing. Hence, deciding whether 〈G, φ〉 has a planar 
straight-line drawing is equivalent to deciding whether there exists an assignment of each mobile vertex to one of the two 
half planes delimited by � that avoids edge crossings.

The latter problem is equivalent to testing the planarity of a graph G ′ obtained by augmenting G with a cycle C that 
connects all fixed vertices in the order they appear along the line �. More precisely, a vertex inside C corresponds to a 
vertex above �; symmetrically, a vertex outside C corresponds to a vertex below �. Since the size of G ′ is linear in the size 
of G and since the graph planarity testing problem is linear-time solvable [7,21], the whole test is executed in O (n) time.

If the test is positive, different techniques can be used to compute a straight-line drawing of G where each fixed vertex 
v is placed at point φ(v). A quadratic-time drawing technique is given in [16]; a more complex algorithm for general plane 
graphs with outer vertices at prescribed locations is described in [10]. Here, we give a simple algorithm that works in linear 
time.

Consider the planar embedding of G ′ determined by the planarity testing algorithm. We describe how to place the 
mobile vertices that are inside C , i.e., those above �. The algorithm for placing the vertices that are outside C (those below 
�) is symmetric. Denote by G ′′ ⊆ G ′ the planar embedded subgraph induced by the fixed vertices and by the mobile vertices 
that are inside C , plus the edges in the path of C going from the leftmost fixed vertex to the rightmost fixed vertex. To 
ease the description, we claim that is not a loss of generality to assume that each mobile vertex is connected to at least 
two fixed vertices. Indeed, suppose that u is a fixed vertex and that v0, v1, . . . , vk are all the mobile vertices of degree one 
attached to u (if any), in this clockwise order around u (refer to Fig. 2). We can always add a dummy fixed vertex ul to the 
left of u such that no other fixed vertices lie between ul and u. Symmetrically, if vh 
= v0 we can add a dummy fixed vertex 
ur immediately to the right of u. Then, we planarly augment the graph by connecting ul to v0 and ur to vh . In this way, v0
and vh have degree two. The vertices v1, . . . , vh−1 can be temporarily removed and trivially reinserted in the drawing once 
all the other vertices of the graph have been drawn. Observe that the number of dummy fixed vertices added in this way is 
linear in the number of fixed vertices of the graph.

Denote by V 0 ⊆ Vm the mobile vertices on the outer face of G ′′ and by V 1 the mobile vertices (if any) that belong to the 
outer face after the removal of the vertices in V 0. More in general, for any i = 1, . . . , k for which V i is not empty, let V i+1
be the mobile vertices that are on the outer face after the removal of the vertices in V 0 ∪ V 1 ∪ · · · ∪ V i . With this procedure, 
k is the largest integer for which Vk is not empty, and the subsets V 0, . . . , Vk form a partition of the mobile vertices of G ′ , 
which can be easily computed in O (n) time by an iterative procedure. The drawing algorithm first adds to the drawing all 
the mobile vertices in V 0 and their incident edges, then it adds the mobile vertices in V 1 and their incident edges, and so 
on, until all the vertices in Vk and their incident edges have been drawn. To this aim, it first executes a plane augmentation 
of the embedded graph by adding a linear number of dummy edges, which will be removed from the final drawing at the 
end of the algorithm. The augmentation is as follows; refer to Figs. 3(a) and 3(b) for an illustration. Let v be a vertex in 
V i and let ul and ur be the leftmost and the rightmost fixed vertices connected to v . Add a suitable set of dummy edges 
(dashed in the figure) that connect v to fixed vertices between ul and ur in such a way that the boundary of each internal 
face that contains v also contains at most one vertex of V i+1. Clearly, the total number of these dummy edges is linear 
in the number of vertices of the graph. Also, these edges can be easily added in linear time by walking on the boundary 
of each internal face of the graph. Then, we add another type of dummy edges (dotted in the figure) in the augmentation 
phase. Namely, for every vertex v ∈ V i and for every internal face f incident to v , consider the vertex v ′ ∈ V i+1 along the 
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Fig. 3. Illustration plane augmentation phase in the proof of Lemma 3. (a) The planar embedded graph G ′′ , with the fixed vertices in black and the mobile 
vertices in white; the label i of each mobile vertex indicates that it belongs to V i . (b) The plane augmentation of G ′′ with dashed edges and the dotted 
edges.

Fig. 4. Illustration of the drawing phase in the proof of Lemma 3. (a) Drawing of the plane augmented graph. (b) Drawing of G ′′ .

boundary of f , if any (thanks to the previous augmentation, there cannot be two vertices of V i+1 along the boundary of f ). 
Denote by ul and u′

l the leftmost adjacent vertices of v and of v ′ , respectively. Analogously, let ur and u′
r be the rightmost 

adjacent vertices of v and of v ′ , respectively. If ul 
= u′
l , we add the edge (ul, v ′). Symmetrically, if ur 
= u′

r , we add the edge 
(ur, v ′). This completes the augmentation phase.

We now describe how to construct the drawing; refer to Fig. 4(a). First notice that if v and w are any two distinct vertices 
in V 0, the open geometric interval determined by the leftmost and the rightmost fixed vertices connected to v is always 
disjoint from the open geometric interval determined by the leftmost and the rightmost fixed vertices connected to w . This 
induces a left-to-right order of the vertices in V 0, which corresponds to the left-to-right order of the intervals determined by 
their extremal adjacent fixed vertices. The vertices in V 0 can be added to the drawing at increasing arbitrary x-coordinates, 
according to their left-to-right order. For example, a natural (yet not restrictive) option is to add every vertex of V 0 at the 
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Fig. 5. Illustration for the proof of Theorem 4: (a) A leveled planar straight-line drawing. (b) The corresponding planar embedding of the graph G ′ .

x-coordinate of the center of its corresponding interval. Also, all the vertices in V 0 can be placed above the fixed vertices 
at any desired y-coordinate (all of them have the same y-coordinate). For i = 1, . . . , k, the vertices of V i are added to the 
drawing in any order. Let v ∈ V i be the next vertex to be added and let ul and ur be its leftmost and rightmost adjacent 
fixed vertices, respectively. Thanks to the plane augmentation described above, v belongs to a quadrangular face f . The 
vertices on the boundary f other than v are the vertices ul and ur , and a vertex w ∈ V i−1 (whose leftmost and rightmost 
adjacent fixed vertices coincide with ul and ur , respectively). Vertex v can be added anywhere inside the triangular region 
formed by the vertices w, ul, ur . This guarantees that the edges incident to v will not cross any other edge in the drawing 
constructed so far. The final drawing of G ′′ is obtained by removing all the dummy edges added in the augmentation phase. 
It is clear that this drawing algorithm can be easily implemented to run in O (n) time. �

Suppose now that the fixed vertices of 〈G, φ〉 lie on h ≥ 1 horizontal lines, which we call levels. We want to test whether 
〈G, φ〉 admits a planar straight-line drawing such that no edge crosses a level and no mobile vertex lies on a level. As already 
observed, this corresponds to finding a planar straight-line drawing of 〈G, φ〉 where no edge intersects a level except at its 
fixed vertex. We call such a drawing a leveled planar straight-line drawing of 〈G, φ〉. We prove the following result.

Theorem 4. Let 〈G = (V f , Vm, E), φ〉 be an FM-bigraph. There exists an O (n)-time algorithm that test whether 〈G, φ〉 admits a 
leveled planar straight-line drawing and that computes such a drawing if the test is positive.

Proof. Denote by L = {L1, . . . , Lh} (h ≥ 1) the set of levels, numbered from top to bottom, that covers all the fixed vertices 
of G . If h = 1, all the fixed vertices are collinear and the statement follows from Lemma 3. Hence, assume that h ≥ 2. Call 
white a mobile vertex with all neighbors in the same level and gray a mobile vertex that is connected to two distinct levels. 
A gray vertex with neighbors in two consecutive levels must lie between them, while a white vertex can lie either above 
or below the level of its neighbors. If a gray vertex has neighbors that are not in two consecutive levels, the instance is 
immediately rejected.

For each level Li ∈ L, let V i
f = {ui

1, . . . , u
i
ri
} be the left-to-right sequence of fixed vertices on Li . Testing whether a 

leveled planar straight-line drawing of 〈G, φ〉 exists generalizes the testing algorithm for collinear fixed vertices. We reduce 
the problem to testing planarity for a graph G ′ suitably defined by augmenting G . Namely, for each Li , add a cycle Ci
connecting all the vertices of V i

f in their left-to-right order; then, subdivide edge (ui
1, u

i
ri
) of Ci with three dummy vertices 

vi
1, v

i
2, v

i
3, in this order from ui

1 to ui
ri

, and call C ′
i the subdivision of Ci ; finally, for each i = 1, . . . , h − 1 and j = 1, 2, 3, 

connect vi
j to vi+1

j . See Fig. 5 for an illustration; in the figure, the dummy vertices vi
j are represented by small squares. 

In a planar embedding of G ′ , a vertex inside C ′
i will be drawn above Li in the leveled planar straight-line drawing, while a 

vertex outside C ′
i will be drawn below Li (1 ≤ i ≤ h). Since there are 3h dummy vertices and h = O (n), the test is executed 

in O (n) time.
If the test is positive, a leveled planar straight-line drawing of 〈G, φ〉 can be computed by applying a technique similar 

to the one described in the proof of Lemma 3, level by level from top to bottom. More precisely, we execute h steps: At 
step i = 1, . . . , h we place all the mobile vertices connected to level Li that have not been placed yet. For 1 ≤ i ≤ h, denote 
by G ′ A

i (resp. G ′ B
i ) the plane graph induced by the mobile vertices connected to i that are above (resp. below) Li , plus 

the path connecting all the fixed vertices of Li . Note that, by definition, the gray vertices of G ′ B
i coincide with the gray 

vertices of G ′ A
i+1; all these vertices are on the outer face of both G ′ B

i and G ′ A
i+1. The mobile vertices connected to L1 are 

placed as described in Lemma 3, in such a way that those of them that are on the outer face of G ′ B
1 receive an arbitrary 

y-coordinate between the y-coordinates of L1 and L2. For any successive step i ≥ 2, the mobile vertices connected to Li are 
placed with the algorithm given in Lemma 3, in such a way that the (outer) mobile vertices of G ′ A ∩ G ′ B keep the positions 
i i−1
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Fig. 6. Illustration for the proof of Lemma 5. In figures (b) and (c) part of the line T between r and r′ is drawn dotted.

already assigned in the previous step (the remaining vertices of G ′ A
i are placed at the same y-coordinate and at arbitrary 

x-coordinates that respect the left-to-right order defined in Lemma 3) and, if i < h, the outer mobile vertices of G ′ B
i receive 

an arbitrary y-coordinate between the y-coordinates of Li and Li+1. Since for every step i = 1, . . . , h the algorithm takes a 
time that is linear in the number of vertices of G ′ A

i ∪ G ′ B
i , the whole time complexity is O (n). �

4. Mobile vertices at internal positions

In this section, we focus on drawings, in which the fixed vertices are in general position and each mobile vertex lies in 
the convex hull of its (fixed) neighbors. For the sake of simplicity, we refer to such drawings as convex-hull drawings.

Before we proceed with the description of our approach, we first introduce some necessary definitions. Let um ∈ Vm be a 
mobile vertex. With slight abuse of notation, we denote by C H(um) the convex hull of the neighbors of um . Let A =A(V f )

be the arrangement of lines defined by all pairs of fixed points; see Fig. 7(a). It is not difficult to see that A has O (n2
f )

lines, which define O (n4
f ) cells (see also [18]). The following lemma allows us to discretize the set of possible positions for 

the mobile vertices. In particular, it implies that all positions of a mobile vertex um in the same cell of A within C H(um)

are equivalent for a planar straight-line drawing of 〈G, φ〉.

Lemma 5. Let 〈G = (V f , Vm, E), φ〉 be an FM-bigraph. Let um ∈ Vm be a mobile vertex, and C a cell of arrangement A = A(V f )

inside C H(um). For a pair of points p and p′ in cell C , let � be a planar straight-line drawing of 〈G, φ〉 where um is at point p and let 
�′ be a planar straight-line drawing of 〈G, φ〉 obtained from � by only moving um from point p to point p′ . Then, �′ is planar if and 
only if � is planar.

Proof. For a proof by contradiction assume that drawing �′ is planar, while drawing � is non-planar; the proof for the other 
direction is symmetric. Since �′ is planar, while � is non-planar, it follows that moving um along the straight line T from 
p′ to p, at some point we get a crossing along one of the edges incident to um . Since cell C is convex, clearly T lies in C . 
Let r be the point of T closest to p′ , such that placing um at r causes such a crossing. By definition of point r, it follows 
that placing um on any point between r and p′ implies no crossing.

Let (um, u f ) be an edge crossed by some other edge (wm, w f ), when um is placed at r. Assume w.l.o.g. that wm is a 
mobile vertex, w f is a fixed vertex, and that um lies to the right of the oriented edge (wm, w f ); see Fig. 6(a). Denote by 
�(u f , w f ) the line through u f and w f and by �(u f , wm) the line through u f and wm . Let R be the region that contains 
um and is delimited by lines �(u f , w f ), �(u f , wm) and the edge (wm, w f ). Let r′ be a point of T lying between r and p′ . 
Notice that r′ has to lie outside of R. Thus, T crosses the boundary of region R. Let us additionally assume that r′ lies 
arbitrarily close to the boundary of R. We distinguish three cases, based on whether T crosses �(u f , w f ), �(u f , wm), or 
the edge (wm, w f ).

Case 1. T crosses �(u f , w f ). Since line �(u f , w f ) is part of A, r′ lies outside C . However, this is a contradiction to the 
assumption that T lies in C .

Case 2. T crosses �(u f , wm); see Fig. 6(b) for an illustration. Since wm is in the convex hull of its neighbors, there is an 
edge (wm, w ′

f ), such that w f and w ′
f are on different sides of the line �(u f , wm). Placing um at r′ yields a crossing with 

(wm, w ′
f ), as r′ is arbitrarily close to �(u f , wm). This is a contradiction to the choice of r.

Case 3. T crosses (wm, w f ); for an illustration refer to Fig. 6(c). Since um lies in the convex hull of its neighbors, there is 
an edge (um, u′

f ), such that u′
f and u f are on different sides of the line through edge (w f , wm). Placing um at r′ would 

introduce a crossing between (um, u′
f ) and (wm, w f ), as r′ lies arbitrarily close to (wm, w f ). This again contradicts the 

choice of r. �
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Fig. 7. (a) Line arrangement A = A(V f ) with the neighbors N(u) in black and N(v) in white (the vertices in N(u) ∩ N(v) are colored black-and-white); 
C H(u) and C H(v) intersect and thus form an edge in Gx . (b) Two clusters C(u) and C(v) of Gc with one exemplary edge between two cell vertices a
and b. (c) Placing u inside cell(a) and v inside cell(b) yields a planar drawing of the FM-bigraph (thick edges); u is colored black and v is colored white, 
consistently with the colors given to their neighbors.

Lemma 5 directly implies that testing if an FM-bigraph admits a planar straight-line drawing is a problem in NP for 
convex-hull drawings.1 More precisely, a non-deterministic algorithm guesses an assignment of the mobile vertices to the 
O (n4

f ) cells and, since G is planar, checks in O (n2
f ) time whether the corresponding straight-line drawing is planar (note 

that nm = O (n f )). We summarize this observation in the following theorem.

Theorem 6. Testing whether an FM-bigraph admits a planar straight-line drawing is a problem in NP if each mobile vertex must lie in 
the convex hull of its neighbors.

In the remainder of this section, we prove that the problem is in fact in P for certain input configurations. Central 
ingredients in our approach are the CH intersection graph Gx of G , the cell graph Gc of G , and the skeleton graph Gs of Gc , 
which we formally define in the following.

The CH intersection graph Gx is defined as the intersection graph [28] of the convex hulls of the neighbors of the mobile 
vertices. Formally, (i) for each mobile vertex u, graph Gx has a vertex associated with C H(u), and (ii) for any two distinct 
mobile vertices u and v , graph Gx has an edge between the vertices corresponding to C H(u) and C H(v) if and only if 
C H(u) and C H(v) overlap, that is, C H(u) ∩ C H(v) 
= ∅.

The cell graph Gc is a clustered graph (see, e.g., Eades and Feng [15]), which is defined as follows; see Fig. 7(b) for an 
illustration. Each mobile vertex u is associated with a cluster C(u); the vertices of C(u), called cell vertices, are the cells of 
A that intersect with C H(u) (and in fact are contained in C H(u)). The vertices of Gc are defined by the disjoint union of 
the vertices of all clusters,2 that is,

V (Gc) = �u∈Vm C(u).

For a cell vertex a of Gc , we denote by cell(a) the cell corresponding to a in A. For a pair of mobile vertices u and v such 
that C H(u) ∩ C H(v) 
= ∅, a cell vertex a ∈ C(u) is adjacent to a cell vertex b ∈ C(v) if and only if placing u in cell(a) and v
in cell(b) produces no crossing among the edges incident to u and v; see Fig. 7(c). Note that graph Gc has O (n4

f nm) vertices 
and O (n8

f n2
m) edges. Also, by definition, any two mobile vertices u and v , such that C H(u) ∩ C H(v) 
= ∅, can be positioned 

within their convex hulls without creating edge crossings if and only if there exist two adjacent cell vertices a ∈ C(u) and 
b ∈ C(v) in Gc .

Finally, the skeleton graph Gs is created by selecting exactly one cell vertex, called a skeleton vertex, from each cluster of 
Gc , such that for every pair of mobile vertices u and v with C H(u) ∩ C H(v) 
= ∅, the skeleton vertices of C(u) and C(v) are 
adjacent in Gc . Graph Gs is the subgraph of Gc induced by the skeleton vertices. Note that Gs might not exist. If Gs exists, 
then it is isomorphic to Gx . The following characterization is an immediate consequence of our definitions.

Lemma 7. An FM-bigraph 〈G, φ〉 admits a planar straight-line convex-hull drawing if and only if cell graph Gc has a skeleton.

Proof. For the forward direction, observe that a planar straight-line drawing immediately defines a skeleton. Conversely, if 
graph Gc has a skeleton Gs , a planar straight-line drawing � of 〈G, φ〉 is obtained by placing each mobile vertex u in the 
cell corresponding to the skeleton vertex of C(u) in Gs . Since crossings may only occur between edges incident to mobile 
vertices u and v such that C H(u) ∩ C H(v) 
= ∅, the obtained drawing � is planar. �

The characterization of Lemma 7 allows us to translate the geometric problem of finding a straight-line convex-hull 
drawing of an FM-bigraph 〈G, φ〉 to a purely combinatorial problem on a support clustered graph Gc constructed from 

1 We remark that in a preliminary version of [33], it is claimed membership in NP for the partial planarity extension problem [34], which would imply 
membership in NP also for our problem. That claim, however, lacks a proof in [34] and the author was only able to prove the NP-hardness of the problem 
in [33] (personal communication).

2 Note that cells in the intersection of two convex hulls correspond to different vertices of Gc .
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〈G, φ〉. Unfortunately, however, this combinatorial problem is NP-hard in its general form, as proved in Theorem 8. Note 
that, the graphs Gx and Gc in the statement of Theorem 8 are algebraic graphs, not associated with a geometry; we call 
cells the vertices of Gc to easily maintain correspondence with the geometric setting previously defined.

Theorem 8. Let Gx = (C, E) be a graph, where C is a set of disjoint clusters of cells. Also, let Gc = (V , E) be a graph, where each vertex 
v of Gc is a cell of a cluster C(v) in C and an edge (u, v) belongs to Gc only if C(u) and C(v) are adjacent in Gx . It is NP-complete to 
test if there is a subset V ′ ⊆ V of skeleton vertices, containing exactly one cell from each cluster in C such that the induced subgraph 
Gc[V ′] is isomorphic to Gx .

Proof. The problem is clearly in NP. The proof of the hardness is by reduction from the well-known 3Sat problem. Starting 
from a boolean 3Sat formula ψ , we create a cluster C(x) for each variable x in ψ and a cluster C(γ ) for each clause γ of ψ . 
In Gx each clause cluster is adjacent to the three clusters of the variables occurring in the clause. Each variable cluster C(x)
consists of two cells in Gc , one for the positive literal x and one for its negation ¬x. Also, each clause cluster C(γ ) contains 
three cells, one for each literal. Finally, connect each literal cell of a clause λ to the corresponding cell of its variable cluster 
and to all four cells of the other two variables of γ .

We now show that ψ has a satisfying truth assignment if and only if there exists a subset of skeleton vertices in Gc that 
induces a subgraph isomorphic to Gx . Assume that we know a satisfying variable assignment of ψ . We select the “true” cells 
of the variable clusters and one satisfied literal of each clause. The induced subgraph of this set of cells is isomorphic to Gx

as the satisfied literal cell of each clause γ covers all three edges of C(γ ) to its three adjacent variable clusters. Conversely, 
if we have a subset of skeleton vertices of Gc that induce a subgraph isomorphic to Gc , then setting the literals of the set 
of selected literal cells to true satisfies ψ . Otherwise, in an unsatisfied clause, none of the three clause cells would connect 
to the selected cells of all three adjacent variable clusters, which contradicts the skeleton property. �

Assuming that P 
= NP and given the fact that the graph constructed in the reduction proof of Theorem 8 is bipar-
tite, there can be no polynomial-time algorithm for the case where the intersection graph Gx is a general bipartite graph. 
Nonetheless, we are able to solve this more general combinatorial problem efficiently when Gx is a cactus (refer to Theo-
rem 10), which includes the special cases in which Gx is a cycle or a tree. It is an interesting open question to investigate 
the computational complexity of the original problem of deciding whether an FM-bigraph admits a planar straight-line 
convex-hull drawing, when the underlying geometry of the problem is taken into account. The next two lemmas are base 
cases for Theorem 10.

Lemma 9. Let 〈G, φ〉 be an FM-bigraph, whose CH intersection graph Gx is a path or a cycle. There exists a polynomial-time algorithm 
that tests whether 〈G, φ〉 has a planar straight-line convex-hull drawing.

Proof. We first discuss the case of a path Gx and then extend the idea to a cycle. So let Gx be a path. By Lemma 7, it is 
enough to test whether Gc has a skeleton. Let u1, . . . , uλ be the mobile vertices in the order their convex hulls appear along 
path Gx . Call a cell vertex a of C(ui) active if and only if the subgraph of Gc induced by C(u1) ∪ · · · ∪ C(ui) has a skeleton 
containing a, where 1 ≤ i ≤ λ. Thus, Gc has a skeleton if and only if there is an active cell vertex in C(uλ).

A simple algorithm that tests this condition works as follows. Initially, mark all cell vertices of C(u1) as active, and then 
propagate this information forward to the cell vertices of C(uλ) as follows. For each i = 2, . . . , λ, mark each cell vertex of 
C(ui) as active if it has an active neighbor in C(ui−1). The time complexity of this simple algorithm is bounded by the 
number of vertices and edges in Gc , which is polynomial in the number of vertices of G .

Consider now the case where Gx is a cycle. The main difference to the case of a path is that, for the existence of a 
skeleton, we need to find an active cell vertex in C(uλ) from which we can “close the cycle” to a compatible active cell 
vertex in C(u1). In order to do so, when we do the forward propagation for i = 2, . . . , λ, we additionally keep track of all 
possible originating cell vertices from C(u1) for each cell vertex of C(ui). More precisely, the set of originating vertices of 
each cell vertex of C(u1) is by definition a singleton containing the cell vertex itself. For i = 2, . . . , λ, the set of originating 
vertices of each cell vertex v in C(ui) is the union of the sets of originating vertices of the active neighbors of v in C(ui−1). 
So when we reach C(uλ) we still know from which active cell vertices of C(u1) a particular cell vertex of C(uλ) can be 
reached in a skeleton of the path from u1 to uλ . In the last step we close the cycle and mark each cell vertex w in C(u1)

as confirmed, if w has an active neighbor v in C(uλ) and w appears in the set of originating cell vertices of v . Now Gc has 
a skeleton if and only if we marked at least one vertex in C(u1) as confirmed. The book keeping of the originating vertices 
adds at most a factor that is linear in the number of cells of C(u1) to the running time.

Note that if the test is positive, a skeleton of Gc can be easily constructed as follows. Initially, we add to the skeleton 
of Gc an active cell vertex αλ of C(uλ), which has in its set of originating cell vertices at least one confirmed neighbor in 
C(u1). Then, for each i = λ − 1, . . . , 1, we add to the skeleton of Gc a cell vertex αi , such that αi is in the cell of originated 
vertices of αi+1. By the choice of the initial cell vertex αλ, it follows that α1 must be a confirmed cell vertex of C(u1). 
Therefore, the reported cell vertices form indeed a skeleton of Gc . �

We now extend the previous technique to the case in which Gx is a cactus, which also covers the case of a tree. We 
recall that a cactus is a connected graph in which any two simple cycles share at most one vertex. A cactus is an outerplanar 
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Fig. 8. (a) An intersection graph Gx that is a cactus. (b) The decomposition tree T of Gx . Clusters C11 of μ6 and C3 of μ1 correspond to the same vertex 
of Gx .

graph and can always be decomposed into a tree where each node corresponds to either a single vertex or a simple cycle 
(refer to Fig. 8(a) for an illustration).

Theorem 10. Let 〈G, φ〉 be an FM-bigraph, whose CH intersection graph Gx is a cactus. There exists a polynomial-time algorithm that 
tests whether 〈G, φ〉 has a planar straight-line convex-hull drawing.

Proof. By Lemma 9, the statement holds when Gx is a path or a cycle. In the general case, our testing algorithm decom-
poses Gx into its tree T (as in Fig. 8(b)), roots T at any node, and visits T bottom-up. More precisely, each vertex of Gx

corresponds to a convex hull C H(u) of a mobile vertex u, and it has a one-to-one correspondence with a cluster C(u) of Gc . 
Thus, each node μ of T corresponds to either a single cluster of Gc or to a cycle of clusters of Gc . Note that when in Gx

two cycles share a vertex (cluster of Gc), we replicate such a vertex in both nodes of T that correspond to the two cycles. 
For example, in Fig. 8(b) cluster C11 inside μ6 and cluster C3 inside μ1 correspond to the same vertex of Gx . Once the 
root of T has been chosen, we define the anchor of μ as the cluster that connects μ to its parent node in T (refer to the 
light-gray colored clusters in Fig. 8(b)). During the bottom-up visit of T , two cases are possible when a node μ is visited:

• μ is a leaf. If μ contains a single cluster (i.e., its anchor), then all its cell vertices are marked as confirmed; if μ contains 
a cycle of clusters, then the confirmed cell vertices of its anchor are computed as for C(u1) in the proof of Lemma 9.

• μ is an internal node. Let ν1, ν2, . . . , νk be the children of μ in T and denote by Cqi the cluster of μ connected to the 
anchor of νi . Note that Cqi may coincide with some Cq j if qi 
= q j . Also, the anchor of νi and Cqi may correspond to the 
same vertex of Gx .
– For each i = 1, . . . , k, if the anchor of νi differs from Cqi in Gx , remove from Cqi all cell vertices that are not connected 

to a confirmed cell vertex of the anchor of νi in Gc , as they cannot occur in any skeleton of Gc . On the other hand, 
if the anchor of νi and Cqi coincide in Gx , remove from Cqi all vertices of the anchor of νi that are not marked as 
confirmed.

– Now, if μ contains a single cluster (i.e., its anchor), then all its remaining cell vertices are marked as confirmed; if μ
contains a cycle of clusters, then the confirmed cell vertices of its anchor are computed as in Lemma 9. At this point, 
if the anchor of μ contains no confirmed vertex, the algorithm stops and the instance is rejected, as a skeleton does 
not exist.

Once the bottom-up visit of T ends, the test is positive if and only if the anchor of the root node of T has a confirmed
cell vertex w , and in this case one can reconstruct a skeleton of Gc starting from w and visiting T top-down. In particular, 
during the top-down visit, for each node μ of T , any confirmed vertex in the anchor of μ can be arbitrarily selected, as it 
is connected to the parent node of μ by construction. Also, if μ corresponds to a simple cycle of clusters, the construction 
of a cycle that connects these clusters is done as in Lemma 9.

Concerning the time complexity, the above algorithm takes polynomial time in the size of Gc . Indeed, the number of 
clusters that may occur in multiple nodes of T (i.e., those that are shared by multiple cycles of clusters) is at most the 
number of cycles in Gx . Therefore, the total number of clusters over all nodes of T is linear in the number of clusters of Gc . 
This also implies that the total number of cell vertices over all clusters of T is linear in the number of cell vertices in Gc . 
Finally, each node μ of T is visited twice (once in the bottom-up visit and once in the top-down visit), and in each visit of 
μ the algorithm has a running time that is polynomial in the number of cell vertices in the clusters of μ. �
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5. Conclusions and open problems

In this paper, we initiated the study of FM-bigraphs, showed that it is NP-hard in the general case to test if they admit 
a planar straight-line drawing, and gave polynomial-time algorithms in some interesting restricted cases. In the following, 
we list several interesting open research questions:

Q1. We solved the problem for convex-hull drawings if the CH intersection graph is a cactus and showed that it is
NP-complete in a non-geometric setting. Can we solve the problem for larger classes of convex-hull drawings in poly-
nomial time (e.g., when the CH intersection graph is a triconnected planar graph) or extend the NP-completeness to our 
geometric setting? More generally, for which other layout constraints or sub-families of FM-bigraphs does the problem 
become tractable?

Q2. Our focus was on proving the existence of polynomial-time algorithms under certain layout constraints, but some of the 
algorithms have high time complexity. Thus, finding more efficient algorithms is of interest.

Q3. We focused on crossing-free drawings of FM-bigraphs. Relaxing the planarity requirement (e.g., for a given maximum 
number of permitted crossings per edge) is an interesting variant, as well as, designing heuristics or exact approaches for 
crossing/bend minimization.
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