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Abstract. Scientists are increasingly turning to interpreted languages,
such as Python, Java, R, Matlab, and Perl, to implement their data
analysis algorithms. While such languages permit rapid software devel-
opment, their implementations often run into performance issues that
slow down the scientific process. Source-level approaches for paralleliza-
tion are problematic for two reasons: first, many of the language features
common to these languages can be challenging for the kinds of analyses
needed for parallelization; and second, even where such analysis is possi-
ble, a language-specific approach implies that each language would need
its own parallelizing compiler and/or constructs, resulting in significant
duplication of effort.
The Science Up To Par project is investigating a radically different ap-
proach to this problem: automatic parallelization at the machine code
level using trace information. The key to accomplishing this will be the
static and dynamic analysis of executables and the reconstitution of such
executables into parallel executables. The key insight is that with trace
information it should be possible optimize out the interpreter and other
dynamic features in a language-agnostic manner and create parallelized
executables for multicore architectures. If successful, this can enable sci-
entists to continue to develop in programming environments that most
conveniently support their scientific exploration without paying the per-
formance overheads currently associated with many such environments.

1 Introduction

Scientific communities, such as medical imaging, the life sciences, and plan-
etary sciences, rely extensively on computer software to process and analyze
the wealth of data they and others are generating. In recent years, interpreted
languages such as Python, Perl, and R have come to dominate data analysis
software development in many areas of science: for example, most of the bioin-
formatics software developed in the last five years was implemented in Python,
JavaScript, or Perl [7]. Such languages have been referred to as productivity
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Fig. 1. s2par tool. Solid boxes are modules being developed as part of this project;
dashed shaded boxes represent third-party software.

languages [2]. The high-level abstractions supported by such languages enable
rapid prototyping that, together with the re-use of contributed code from the
scientific community, has led to productivity gains in the development of data
analysis and simulation programs.

Unfortunately, some of the features that make these languages productive,
e.g., dynamic typing, dynamic error checking, not requiring programmers to
specify the parallelization strategy, and being interpreted, incur significant run-
time overheads and lead to execution times that are orders of magnitude more
than programming languages such as Fortran, C/C++, and parallel program-
ming languages. Scientists can therefore either work within the constraints of in-
efficient software, which can limit the problem sizes they can address; or rewrite
their software in a different programming language, where they would also have
to port their colleagues’ algorithms to reuse sub-routines and/or compare re-
sults. Neither alternative is very appealing because of the iterative nature of data
analysis algorithm development that involves evolving the algorithms based on
feedback from evaluating such algorithms on large datasets. The Science Up To
Par project, presented in this paper, aims to provide the advantages of current
alternatives while mitigating their disadvantages.

Our goal is to bring multicore parallelism to scientists while still allowing
them to use programming environments that most conveniently support their
scientific exploration. We are developing a language-agnostic, trace-guided opti-
mization tool that operates directly on the productivity-language software written
by scientists. This tool will combine dynamic instrumentation and analysis with
aggressive optimization and parallelization to create specialized and parallelized
executables for use with large datasets based on example runs with small repre-
sentative datasets. Figure 1 illustrates the Science Up To Par optimization tool
(s2par) and the dynamic analysis toolchain that s2par is built on.

Scientists will extend their development cycle with a step where they let
the Science Up To Par optimization tool trace the processing of small example
datasets. The optimization tool will provide a specialized, optimized, and par-
allelized executable based on the traces. Scientists will then be able to analyze
their larger datasets with the provided executable. Our usage goal is for the tool
to “just work” as illustrated in the following example:
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s2par --profile <profile_name> python myprog.py <parameters>

s2par --optimize <profile_name> -o newexec

./newexec <parameters for larger datasets>

Thus, scientists will be able to continue using the programming languages that
they are most productive in while still being able to leverage multicore resources
to analyze large datasets with scientifically useful turnaround times.

To achieve these goals, we need to solve the following technical problems:

– Given an execution trace (a sequence of machine instructions), how can we
separate out the control-flow and data-flow logic of the interpreted program
(the interpretee) from those of the interpreter?

– How representative are traces of small inputs in scientific codes?
– How can we detect parallel and/or reduction loops in the recovered control

flow graphs?
– How can we implement the parallel loops without assuming an underlying

memory model, (i.e., without assuming arrays are being used)?
– How can we efficiently catch control-flow that did not occur in the traced

input execution but does for larger datasets?

The remainder of this paper overviews the progress we have made in solving
these problems.

2 Control-Flow and Data-Flow Separation

The machine-level instruction sequence observed in an execution trace reflects
control flows and data flows resulting from a combination of the program logic
of the interpreter and the interpreted program. This intermingling of the logic of
these two programs can hamper parallelization. For example, branch instructions
in the interpreter’s dispatch code can result in spurious control dependencies,
while data movement to and from the interpreter’s expression evaluation stack
can result in spurious data dependencies. To permit effective parallelization,
therefore, we have to separate out the program logic of the interpreted program
from that of the interpreter. This involves a number of nontrivial challenges, for
example:

– Translating from the input program to the interpreter’s internal representa-
tion (IR) of that code involves the interpreter’s front-end (possibly including
the compiler that generates the IR), whose logic can be complex and difficult
to untangle.

– Different interpreters may use different IRs, e.g., a linear array of byte code
instructions, as in Python and Java, or a tree representation, as in Perl and
some implementations of Ruby.

– The dispatch mechanism may be different, e.g., byte code as in Python and
Java, direct-threading as in Ruby.

– Some of the interpreter code may be created dynamically at interpreter
startup time, as in the Hotspot template-based interpreter for Java [6].
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– Depending on the optimizations performed by the interpreter front end,
the dispatch code may be replicated, resulting in multiple different dispatch
instructions in the executed code (e.g., as in optimized CPython).

– An interpreter that supports multi-threading (or simulates it, as with the
thread library in CPython) may have multiple virtual instruction point-
ers (vips), making it necessary to untangle the code corresponding to the
different vips.

Many of these issues arise from the diversity of design choices available for im-
plementing interpreters, and they mean that a language-agnostic system such
as that proposed here cannot make a priori assumptions about any particular
design choice. For example, we cannot assume that the IR is a byte-code, or
that it occupies a contiguous region of memory. Coming up with effective ways
to identify and reason about interpreters and interpreted programs under weak
assumptions is a major research thrust of this research.

2.1 Control-flow Separation

Control-flow separation refers to the process of untangling and separating the
control flow logic of the interpreted program from that of the interpreter. Fur-
thermore, in an interpreted execution of a program, control dependencies in the
input program are mapped to data dependencies through the interpreter’s vir-
tual instruction pointer (vip) [14]. For example, a conditional branch in the input
program is implemented by updating the value of the vip appropriately, thereby
inducing a data dependence through that variable. These data dependencies
have to be identified, and the corresponding control dependencies reconstructed,
when separating out the control flow logic of the interpreter from that of the
input program (see Figure 2).

Fig. 2. Illustrating the process of deriving the interpreters control flow graph from a
trace and then specializing then deriving the control flow graph of the program being
interpreted.
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Fig. 3. Example
recovered CFG

We are decomposing the interpreter specialization problem
into a collection of smaller and simpler problems.

1. Given the file from which the input program is read (spec-
ified, for example, as a command-line argument), identify
the memory regions corresponding to the IR of the pro-
gram being interpreted. An example of such an IR is the
byte code for the input program.

2. Given the set of locations comprising the input program’s
IR, identify the control transfers corresponding to the dis-
patch instruction(s) of the interpreter.

3. Given the set of dispatch instructions, identify the machine
instructions corresponding to the handler for each byte
code instruction and thereby reconstruct the control flow
graph of the input program.

4. Given the control flow graph of the input program, identify
and optimize out inefficiencies due to interpretation.

We propose to use dynamic taint analysis [10] (augmented
to deal with implicit flows through control dependencies) to
follow the flow of values through the computation: e.g., from
the input program through the front end to the IR; and from
the IR to the dispatch code. To obtain accurate results, it will
be essential to minimize imprecision arising from over-tainting;
we propose to apply ideas from our earlier work on bit-precise
architecture-aware taint analysis [12, 13] to address this issue.

To explore the viability of these ideas, we have experi-
mented with a simple prototype tool for analyzing interpreter
traces for a variety of different languages, including Java, Perl,
Python, and Ruby. These experiments have helped identify, and clarify our un-
derstanding of, many of the research challenges identified above. This prototype
does not address the issues that arise from the interactions between the inter-
preter’s code and data structures (e.g., the interpreter’s expression stack) as well
as interactions with other components of the runtime system (e.g., the garbage
collector). Nevertheless, we have been able to make progress on the third research
subproblem mentioned above: namely, given a set of dispatch instructions, re-
construct the control flow graph of the input program.

We recover the control flow graph using a method broadly analogous to
that of Sharif et al. [11], though significantly different in details. Like Sharif et
al, we employ a multi-label taint analysis to identify the dispatch of an inter-
preter; unlike that work, however, we do not make any assumptions about the
interpreter or the interpreted IR (e.g., Sharif et al. assume a bytecode inter-
preter where the executed bytecode is laid out as a contiguous array of memory
locations—assumptions that do not hold for AST interpreters as for Perl and
direct-threaded interpreters as for Ruby). The generality of our approach, while
important for applicability to a wide variety of interpreters, can sometimes result
in an over-approximation of the bytecode executed. Additionally, we extend past
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Sharif’s work by using the identified bytecode to construct a CFG of the input
source file, allowing us to determine not only what x86 instructions are related
to a particular bytecode instruction, but also what x86 instructions execute a
particular instance of a bytecode instruction. With this information, we believe
the interpreter can be optimized for a particular input program using techniques
similar to those employed by trace based JIT compilers [1].

Experiments using the above approach on a few small programs have been
encouraging. Figure 3 shows the control flow graph of a histogram loop written
in Python, recovered from the dynamic trace using our method. Each node
represents a basic block of byte codes, each bytecode is composed of multiple
x86 instructions, and the label on the node represents the address of the first
x86 instruction in the basic block. The edge labels represent dynamic trip count.
Our method correctly retrieves two loops, one to generate the histogram and
another to write it out and reconstitutes them into a working executable.

2.2 Data-flow separation

Data-flow separation refers to the process of separating the data-flow logic of the
interpreted program from that of the interpreter and the runtime system. The
issue arises because computations of data values in the interpreter involve data
movement into and out of a set of locations used for expression evaluation (e.g.,
an expression stack, as in the Java Virtual Machine and CPython interpreter; or
virtual registers, as in the Dalvik virtual machine and the SPIM interpreter for
MIPS assembly code). The reads and writes involving these locations can then
induce spurious dependencies between instructions. Such dependencies can also
arise from data movements in the runtime system, e.g., due to garbage collection
or just-in-time compilation.

We plan to apply compiler optimization techniques to effect data-flow sepa-
ration. For example, using an SSA representation may allow us to identify and
separate out distinct uses of expression evaluation locations in the interpreter,
such as the expression stack, without having to presuppose any particular mech-
anism for expression evaluation. There may also be complexities arising from
architectural features, e.g., the stack of floating point registers on x86 and x86-
64 processors.

3 Small Datasets Appear Representative

A potential drawback of optimization based on dynamic analysis is that of code
coverage: the only code paths observed in dynamic analyses are those executed
with the profiling inputs. This can be problematic if the “real” datasets exercise
code paths that deviate from those observed on profiling runs. Avoiding correct-
ness problems resulting from such deviations requires adding additional runtime
checks into the code, which then incur some runtime overhead.

As an initial check that the dynamic analyses performed on small input data
are representative enough to be applied to larger-scale target inputs without
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loss of correctness, we examined coverage between the training and reference
inputs of twelve SPECfp-2006 benchmarks.1 We used our binary-level dynamic
analysis toolset to determine, for each benchmark program tested, the fraction
of the machine code executed on the reference inputs that was also executed on
the training inputs.

Our experiments indicate that, on average, 96.5% of the code executed on the
reference inputs is also executed on the training inputs, with ten of the programs
having >99% coverage. Only one, calculix, had a significant difference (69%)
in coverage of the scientific features. This suggests that while smaller training
inputs may not always provide complete coverage of the code executed on the
reference inputs, in most cases the difference will likely be small. To guide sci-
entists in choosing a set of small representative inputs, we plan to automatically
pre-check inputs and provide feedback when coverage tools exists for their lan-
guage. Examples of such tools include Figleaf for Python, simplecov for Ruby,
and Devel::Cover for Perl.

When coverage is incomplete, we must insert appropriate and efficient run-
time checks to ensure correctness should a given input attempt to access a non-
traced feature of the software. Interpreter specialization will impose strong as-
sumptions regarding facets of the program such as control flow and data types.
We will identify the locations of these assumptions, encode those assumptions as
checks, and insert the checks into the control flow where they dominate the as-
sumption. For example, the Python interpreter includes many conditional checks
involving type information. We can assume types do not change while data anal-
ysis is being performed, assume the largest version of the datatype (e.g., double
vs. float) used during training runs on representative inputs should be used
throughout, and therefore remove extraneous conditional checks.

We also plan an in-depth analysis of these scripts to determine the charac-
teristics of the aliasing used in their data structures, with a focus on multiply-
referenced values in the same data structure, amount of indirection, and the
differences between small and large inputs with respect to these measures. Mul-
tiply referenced values could affect the correctness of our parallelization. This
analysis will guide our strategy in handling these cases.

4 Parallelism Exists

Data analysis scripts contain significant parallelism. In current and previous
work [4, 3], we have been collaborating with scientists who write data analysis
codes in Python, Perl, Matlab, and Julia. These data analysis codes typically
have a single bottleneck loop. The bottleneck is often a reduction of some kind:
adding items to a list, set, or matrix or performing some calculation and main-
taining summary information.

1 We had problems building and running the remaining five benchmarks in the
SPECfp-2006 suite. Some of these problems may have been due to non-standard-
conformant code in the benchmarks.
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As part of an in depth analysis of scientific data analysis codes, done in
conjunction with a graduate level course, we ported Matlab and Perl scien-
tific data analysis codes to new parallel programming models, leading to signifi-
cant speedups (60x for a medical imaging analysis) [3, 5]. Although some of this
speedup was due to porting a snap-shot of the program to a compiled program-
ming language, through this process we also discovered significant parallelism in
the computations causing performance bottlenecks (in [5] over 6× speedup on
8 cores for an orbital analysis code in Python and in [3] over 7× speedup for a
medical imaging analysis code in Matlab).

Finding the parallelism in a trace that includes the interpreter code as its
interpreting is more challenging than finding parallelism of a compiled program.
Oh et al. [9, 8] showed that if an interpreter is specialized for a specific input
program, it is possible to find pipeline and speculative loop-level parallelism at
the LLVM IR level. They found that performing profiling at the LLVM level
significantly reduced the speculation overhead thus leading to decent parallel
scaling with some Lua and Perl programs.

5 Implementing the Parallelism

We plan to implement loop-level parallelism by breaking the LLVM IR instruc-
tions from time-consuming loops into two sets: the instructions that perform
the (parallelizable) work and the instructions that determine the next iteration,
including the loop completion. A master thread will execute the iterator code
and then spawn off tasks to a task pool implementation.

The proposed work includes plans to raise the interprocedural control flow
graph of x86 instructions into annotated LLVM and then analyze for parallelism.
In our initial experiments, we determined how to find parallelism in the full x86
traces using a back tainting analysis (e.g., equivalent to backward slicing. The
example code was a C++ loop traversing an input linked list, performing some
busy work computation in the form of a loop of sin() calls, and writing the sum
of those sin() call results into a node of the output linked list.

Figure 4(a) illustrates the split of x86 instructions for one loop iteration into a
master thread that deals with the linked list traversal that needs to be serialized
and the task instructions (minus the sin() loop due to space considerations) for
tasks that can be computationally overlapped. We have also started experiment-
ing with finding the parallelism in the traces. The algorithm for finding the split
involves identifying loop-exit branches and upwards-exposed reads per iteration
and placing the instructions that influence those into the master thread. The
leftover instructions can be encapsulated into a worker task function.

To implement the found parallelism, we use POSIX threads (pthreads). Using
a hand-implemented version of the example loop at the C level, we see promising
results. The goal of these tests were to determine the size of work tasks required
to see a performance increase over serial execution. To see execution speeds on
par with the serial execution, the work function must execute 8,000 instructions
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(a) The x86 instructions of one loop iteration are split into those to be
serialized by the master thread (pink) and those that can be parallelized
into tasks (green). Parameters needed by the tasks are also determined
(red lines).
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(b) Execution time scaling with number of threads and amount of dis-
covered parallel work. As the work per iteration crosses the equivalent
of 35 calls to sin(), our method run on four threads executes faster than
the original C serial code.

Fig. 4. Proof of concept identification of serial master thread and parallel worker in-
structions from an x86 trace of a C program and performance of an initial pthreads
implementation.
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with two worker threads, 5,000 with four, and 11,000 with eight. This corresponds
to 50, 40, and 70 calls to sin(), respectively. Figure 4(b) summarizes these results.

Another major issue that will need to be addressed is the detection of reduc-
tion dependences in the loop and implementing their parallelism. Their detection
and implementation will be somewhat intertwined, because it will be more com-
plex than a read, add, and update operation on a register. Some of the values
experiencing a reduction might be values in a dictionary. Therefore the reduc-
tion operation will have to be detected within a trace through memory loads
and stores as well as operations on registers. We plan to leverage the existing re-
search on source-level detection of reductions and other commutative operations
and extend that to the LLVM IR.

One possible approach for handling reductions is that once the loads and
stores involved have been detected, the implementation will be built by putting
off the loads and stores to the shared memory accesses. Each thread could be
given its own map that maps memory addresses to value and address pairs at
runtime. At end of executing all tasks in a loop, all thread maps would be reduced
into shared memory.

With reduction and loop parallelism detected, the next step will be exper-
imenting with implementation approaches that leverage that parallelism while
amortizing overhead. The most problematic overhead will probably be the serial
bottleneck of the master thread. Providing each thread its own address space
and then mapping results back into shared spaces once large-grained tasks are
complete might help break this bottleneck, but will introduce memory copying
overhead. Experimentation and modeling of the various tradeoffs will be needed.

6 Conclusion

This research aims to develop software analysis, optimization, and parallelization
techniques to obtain significant performance improvements in research software
developed by scientists (including several collaborators from a diversity of scien-
tific disciplines). Our goal is to do this in a way that (a) is language-agnostic and
transparent to the scientists, so that they can continue to work in the program-
ming language of their choice and (b) leverages state-of-the-art compiler technol-
ogy to effectively utilize multicore parallelism. The impact of this research will be
two-fold: first and foremost, it will benefit a wide variety of scientists—most im-
mediately medical imaging analysis and life sciences at the University of Arizona
but also elsewhere—by boosting the speed of their research software with little
to no additional effort on their part; second, it will benefit computer science re-
search by developing new techniques for software performance optimization and
thereby giving rise to additional new and exciting research problems.
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6. T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox.
Design of the java hotspot&trade; client compiler for java 6. ACM Trans. Archit.
Code Optim., 5(1):7:1–7:32, May 2008.

7. P. Lindenbaum. Programming language use distribution from recent programs/ar-
ticles, Apr. 2017. https://www.biostars.org/p/251002/.

8. T. Oh, S. R. Beard, N. P. Johnson, S. Popovych, and D. I. August. A generalized
framework for automatic scripting language parallelization. In To appear in the
Proceedings of the 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2017.

9. T. Oh, H. Kim, N. P. Johnson, J. W. Lee, and D. I. August. Practical automatic
loop specialization. In Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’13, pages 419–430, New York, NY, USA, 2013. ACM.

10. E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In Proc. IEEE Symposium on Security and Privacy, pages 317–331, 2010.

11. M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic reverse engineering of
malware emulators. In Security and Privacy, 2009 30th IEEE Symposium on,
pages 94–109. IEEE, 2009.

12. B. Yadegari and S. Debray. Bit-level taint analysis. In IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2014.

13. B. Yadegari and S. Debray. Symbolic execution of obfuscated code. In Proc. 22nd
ACM Conference on Computer and Communications Security (CCS), Oct. 2015.

14. B. Yadegari and S. Debray. Control dependencies in interpretive systems. In Proc.
17th International Conference on Runtime Verification (RV 2017), Sept. 2017.


