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ABSTRACT
What does it mean for an algorithm to be biased? In U.S.
law, unintentional bias is encoded via disparate impact, which
occurs when a selection process has widely different outcomes
for different groups, even as it appears to be neutral. This
legal determination hinges on a definition of a protected class
(ethnicity, gender) and an explicit description of the process.

When computers are involved, determining disparate im-
pact (and hence bias) is harder. It might not be possible to
disclose the process. In addition, even if the process is open, it
might be hard to elucidate in a legal setting how the algorithm
makes its decisions. Instead of requiring access to the process,
we propose making inferences based on the data it uses.

We present four contributions. First, we link disparate im-
pact to a measure of classification accuracy that while known,
has received relatively little attention. Second, we propose
a test for disparate impact based on how well the protected
class can be predicted from the other attributes. Third, we
describe methods by which data might be made unbiased.
Finally, we present empirical evidence supporting the effec-
tiveness of our test for disparate impact and our approach
for both masking bias and preserving relevant information in
the data. Interestingly, our approach resembles some actual
selection practices that have recently received legal scrutiny.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
Mining; J.4 [Computer Applications]: Social and Behavioral
Sciences; K.5.1 [Computing Milieux]: Legal Aspects of Com-
puting—Hardware/Software Protection
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1. INTRODUCTION
In Griggs v. Duke Power Co. [19], the US Supreme Court

ruled a business hiring decision illegal if it resulted in dis-
parate impact by race even if the decision was not explicitly
determined based on race. The Duke Power Co. was forced to
stop using intelligence test scores and high school diplomas,
qualifications largely correlated with race, to make hiring de-
cisions. The Griggs decision gave birth to the legal doctrine
of disparate impact, which today is the predominant legal the-
ory used to determine unintended discrimination in the U.S.
Note that disparate impact is different from disparate treat-
ment, which refers to intended or direct discrimination. Ricci
v. DeStefano [21] examined the relationship between the two
notions, and disparate impact remains a topic of legal interest.

Today, algorithms are being used to make decisions both
large and small in almost all aspects of our lives, whether
they involve mundane tasks like recommendations for buy-
ing goods, predictions of credit rating prior to approving a
housing loan, or even life-altering decisions like sentencing
guidelines after conviction [6]. How do we know if these algo-
rithms are biased, involve illegal discrimination, or are unfair?

These concerns have generated calls, by governments and
NGOs alike, for research into these issues [17, 23]. In this
paper, we introduce and address two such problems with the
goals of quantifying and then removing disparate impact.

While the Supreme Court has resisted a “rigid mathemat-
ical formula” defining disparate impact [20], we will adopt
a generalization of the 80 percent rule advocated by the US
Equal Employment Opportunity Commission (EEOC) [24].
We note that disparate impact itself is not illegal; in hiring de-
cisions, business necessity arguments can be made to excuse
disparate impact.

DEFINITION 1.1 (DISPARATE IMPACT (“80% RULE”)). Given
data set D = (X, Y, C), with protected attribute X (e.g., race,
sex, religion, etc.), remaining attributes Y, and binary class to be
predicted C (e.g., “will hire”), we will say that D has disparate
impact if

Pr(C = YES|X = 0)
Pr(C = YES|X = 1)

≤ τ = 0.8

for positive outcome class YES and majority protected attribute
1 where Pr(C = c|X = x) denotes the conditional probability
(evaluated over D) that the class outcome is c ∈ C given protected
attribute x ∈ X.1

1Note that under this definition disparate impact is deter-
mined based on the given data set and decision outcomes.



The two problems we consider address identifying and
removing disparate impact. The disparate impact certification
problem is to guarantee that, given D, any classification algo-
rithm aiming to predict some C′ (which is potentially different
from the given C) from Y would not have disparate impact.
By certifying any outcomes C′, and not the process by which
they were reached, we follow legal precedent in making no
judgment on the algorithm itself, and additionally ensure that
potentially sensitive algorithms remain proprietary. The dis-
parate impact removal problem is to take some data set D and
return a data set D̄ = (X, Ȳ, C) that can be certified as not hav-
ing disparate impact. The goal is to change only the remaining
attributes Y, leaving C as in the original data set so that the
ability to classify can be preserved as much as possible.

1.1 Results
We have four main contributions.
We first introduce these problems to the computer science

community and develop its theoretical underpinnings. The
study of the EEOC’s 80% rule as a specific class of loss func-
tion does not appear to have received much attention in the
literature. We link this measure of disparate impact to the
balanced error rate (BER). We show that any decision exhibit-
ing disparate impact can be converted into one where the
protected attribute leaks, i.e. can be predicted with low BER.

Second, this theoretical result gives us a procedure for certi-
fying the impossibility of disparate impact on a data set. This
procedure involves a particular regression algorithm which
minimizes BER. We connect BER to disparate impact in a vari-
ety of settings (point and interval estimates, and distributions).
We discuss these two contributions in Sections 3 and 4.

In Section 5, we show how to transform the input dataset
so that predictability of the protected attribute is impossible.
We show that this transformation still preserves much of the
signal in the unprotected attributes and has nice properties in
terms of closeness to the original data distribution.

Finally, we present a detailed empirical study in Section
6. We show that our algorithm certifying lack of disparate
impact on a data set is effective, such that with the three
classifiers we used certified data sets don’t show disparate
impact. We demonstrate the fairness / utility tradeoff for our
partial repair procedures. Comparing to related work, we find
that for any desired fairness value we can achieve a higher
accuracy than other fairness procedures. This is likely due to
our emphasis on changing the data to achieve fairness, thus
allowing any strong classifier to be used for prediction.

Our procedure for detecting disparate impact goes through
an actual classification algorithm. As we show in our experi-
ments, a better classifier provides a more sensitive detector.
We believe this is notable. As algorithms get better at learning
patterns, they become more able to introduce subtle biases
into the decision-making process by finding subtle dependen-
cies among features. But this very sophistication helps detect
such biases as well via our procedure! Thus, data mining can
be used to verify the fairness of such algorithms as well.

2. RELATED WORK
There is, of course, a long history of legal work on disparate

impact. There is also related work under the name statistical

Notably, it does not use a broader sample universe, and does
not take into account statistical significance as has been advo-
cated by some legal scholars [16].

discrimination in Economics. We will not survey such work
here. Instead, we direct the reader to the survey of Romei
and Ruggieri [18] and to a discussion of the issues specific to
data mining and disparate impact [1]. Here, we focus on data
mining research relating to combating discrimination. This
research can be broadly categorized in terms of methods that
achieve fairness by modifying the classifiers and those that
achieve fairness by modifying data.

Kamishima et al. [9, 10] develop a regularizer for classifiers
to penalize prejudicial outcomes and show that this can re-
duce indirect prejudice (their name for implicit discrimination
like disparate impact) while still allowing for accurate classifi-
cation. They note that as prejudicial outcomes are decreased,
the classification accuracy is also decreased. Our work falls
into the category of algorithms that change the input data.
Previous work has focused on changing the class values of
the original data in such a way so that the total number of
class changes is small [2, 8], while we will keep the class val-
ues the same for training purposes and change the data itself.
Calders et al. [2] have also previously examined one method
for changing the data in which different data items are given
weights and the weights are adjusted to achieve fairness. In
this category of work, as well, there is worry that the change to
the data will decrease the classification accuracy, and Calders
et al. have formalized this as a fairness/utility tradeoff [2].
We additionally note that lower classification accuracy may
actually be the desired result, if that classification accuracy
was due to discriminatory decision making in the past.

An important related work is the approach of “fairness
through awareness” of Dwork et al. [3] and Zemel et al. [25].
Dwork et al. [3] focus on the problem of individual fairness;
their approach posits the existence of a similarity measure
between individual entities and seeks to find classifiers that
ensure similar outcomes on individuals that are similar, via a
Lipschitz condition. In the work of Zemel et al. [25], this idea
of protecting individual fairness is combined with a statistical
group-based fairness criterion that is similar to the approach
we take in this work. A key contribution of their work is that
they learn a modified representation of the data in which fair-
ness is ensured while attempting to preserve fidelity with the
original classification task. While this group fairness measure
is similar to ours in spirit, it does not match the legal defini-
tion we base our work on. Another paper that also (implicitly)
defines fairness on an individual basis is the work by Thanh
et al. [11]. Their proposed repair mechanism changes class
attributes of the data (rather than the data itself).

Pedreschi, Ruggieri and Turini [14, 15] have examined the
“80% rule” that we study in this paper as part of a larger class
of measures based on a classifier’s confusion matrix.

3. DISPARATE IMPACT AND ERROR RATES
We start by reinterpreting the “80% rule” in terms of more

standard statistical measures of quality of a classifier. This
presents notational challenges. The terminology of “right”
and “wrong”, “positive” and “negative” that is used in clas-
sification is an awkward fit when dealing with majority and
minority classes, and selection decisions. For notational conve-
nience only, we will use the convention that the protected class
X takes on two values: X = 0 for the “minority” class and
X = 1 for the “default” class. For example, in most gender-
discrimination scenarios the value 0 would be assigned to
“female” and 1 to “male”. We will denote a successful binary
classification outcome C (say, a hiring decision) by C = YES



and a failure by C = NO. Finally, we will map the majority
class to “positive” examples and the minority class to “nega-
tive” examples with respect to the classification outcome, all
the while reminding the reader that this is merely a conve-
nience to do the mapping, and does not reflect any judgments
about the classes. The advantage of this mapping is that it
renders our results more intuitive: a classifier with high “er-
ror” will also be one that is least biased, because it is unable
to distinguish the two classes.

Table 1 describes the confusion matrix for a classification with
respect to the above attributes where each entry is the prob-
ability of that particular pair of outcomes for data sampled
from the input distribution (we use the empirical distribution
when referring to a specific data set).

Outcome X = 0 X = 1
C = NO a b
C = YES c d

Table 1: A confusion matrix

The 80% rule can then be quantified as:

c/(a + c)
d/(b + d)

≥ 0.8

Note that the traditional notion of “accuracy” includes terms
in the numerator from both columns, and so cannot be directly
compared to the 80% rule. Still, other class-sensitive error
metrics are known, and more directly relate to the 80% rule:

DEFINITION 3.1 (CLASS-CONDITIONED ERROR METRICS). The
sensitivity of a test (informally, its true positive rate) is defined as
the conditional probability of returning YES on “positive” examples
(a.k.a. the majority class). In other words,

sensitivity =
d

b + d
The specificity of a test (its true negative rate) is defined as the
conditional probability of returning NO on “negative” examples
(a.k.a. the minority) class. I.e.,

specificity =
a

a + c

DEFINITION 3.2 (LIKELIHOOD RATIO (POSITIVE)). The likeli-
hood ratio positive, denoted by LR+, is given by

LR+(C, X) =
sensitivity

1− specificity
=

d/(b + d)
c/(a + c)

We can now restate the 80% rule in terms of a data set.

DEFINITION 3.3 (DISPARATE IMPACT). A data set has dis-
parate impact if

LR+(C, X) >
1
τ
= 1.25

It will be convenient to work with the reciprocal of LR+,
which we denote by

DI =
1

LR+(C, X)
.

This will allow us to discuss the value associated with dis-
parate impact before the threshold is applied.

Multiple classes. Disparate impact is defined only for two
classes. In general, one might imagine a multivalued class

attribute (for example, like ethnicity). In this paper, we will
assume that a multivalued class attribute has one value desig-
nated as the “default” or majority class, and will compare each
of the other values pairwise to this default class. While this
ignores zero-sum effects between the different class values,
it reflects the current binary nature of legal thought on dis-
crimination. A more general treatment of joint discrimination
among multiple classes is beyond the scope of this work.

4. COMPUTATIONAL FAIRNESS
Our notion of computational fairness starts with two play-

ers, Alice and Bob. Alice runs an algorithm A that makes
decisions based on some input. For example, Alice may be
an employer using A to decide who to hire. Specifically, A
takes a data set D with protected attribute X and unprotected
attributes Y and makes a (binary) decision C. By law, Alice
is not allowed to use X in making decisions, and claims to
use only Y. It is Bob’s job to verify that on the data D, Alice’s
algorithm A is not liable for a claim of disparate impact.

Trust model. We assume that Bob does not have access to A.
Further, we assume that Alice has good intentions: specifically,
that Alice is not secretly using X in A while lying about it.
While assuming Alice is lying about the use of X might be
more plausible, it is much harder to detect. More importantly,
from a functional perspective, it does not matter whether
Alice uses X explicitly or uses proxy attributes Y that have the
same effect: this is the core message from the Griggs case that
introduced the doctrine of disparate impact. In other words,
our certification process is indifferent to Alice’s intentions, but
our repair process will assume good faith.

We summarize our main idea with the following intuition:

If Bob cannot predict X given the other attributes of
D, then A is fair with respect to Bob on D.

4.1 Predictability and Disparate Impact
We now present a formal definition of predictability and

link it to the legal notion of disparate impact. Recall that D =
(X, Y, C) where X is the protected attribute, Y is the remaining
attributes, and C is the class outcome to be predicted.

The basis for our formulation is a procedure that predicts
X from Y. We would like a way to measure the quality of this
predictor in a way that a) can be optimized using standard
predictors in machine learning and b) can be related to LR+.
The standard notions of accuracy of a classifier fail to do the
second (as discussed earlier) and using LR+ directly fails to
satisfy the first constraint.

The error measure we seek turns out to be the balanced error
rate BER.

DEFINITION 4.1 (BER). Let f : Y → X be a predictor of
X from Y. The balanced error rate BER of f on distribution D
over the pair (X, Y) is defined as the (unweighted) average class-
conditioned error of f . In other words,

BER( f (Y), X) =
Pr[ f (Y) = 0|X = 1] + Pr[ f (Y) = 1|X = 0]

2

DEFINITION 4.2 (PREDICTABILITY). X is said to be ε-predictable
from Y if there exists a function f : Y → X such that

BER( f (Y), X) ≤ ε.

This motivates our definition of ε-fairness, as a data set that
is not predictable.



DEFINITION 4.3 (ε-FAIRNESS). A data set D = (X, Y, C)
is said to be ε-fair if for any classification algorithm f : Y → X

BER( f (Y), X) > ε

with (empirical) probabilities estimated from D.

Recall the definition of disparate impact from Section 3. We
will be interested in examining the potential disparate impact
of a classifier g : Y → C and will consider the value DI(g) =
1/LR+(g(Y), X) as it relates to the threshold τ. Where g is
clear from context, we will refer to this as DI.

The justification of our definition of fairness comes from
the following theorem:

THEOREM 4.1. A data set is (1/2− β/8)-predictable if and
only if it admits disparate impact, where β is the fraction of elements
in the minority class (X = 0) that are selected (C = 1).

PROOF. We will start with the direction showing that dis-
parate impact implies predictability. Suppose that there exists
some function g : Y → C such that LR+(g(y), c) ≥ 1

τ . We will
create a function ψ : C → X such that BER(ψ(g(y)), x) < ε for
(x, y) ∈ D. Thus the combined predictor f = ψ ◦ g satisfies
the definition of predictability.

Consider the confusion matrix associated with g, depicted
in Table 2. Set α , b

b+d and β , c
a+c . Then we can write

Prediction X = 0 X = 1
g(y) = NO a b
g(y) = YES c d

Table 2: Confusion matrix for g

LR+(g(y), X) = 1−α
β and DI(g) = β

1−α .
We define the purely biased mapping ψ : C → X as ψ(YES) =

1 and ψ(NO) = 0. Finally, let φ : Y → X = ψ ◦ g. The
confusion matrix for φ is depicted in Table 3. Note that the
confusion matrix for φ is identical to the matrix for g.

Prediction X = 0 X = 1
φ(Y) = 0 a b
φ(Y) = 1 c d

Table 3: Confusion matrix for φ

We can now express BER(φ) in terms of this matrix. Specifi-
cally, BER(φ) =

α+β
2 .

Representations. We can now express contours of the DI and
BER functions as curves in the unit square [0, 1]2. Reparametriz-
ing π1 = 1− α and π0 = β, we can express the error measures
as DI(g) = π0

π1
and BER(φ) = 1+π0−π1

2
As a consequence, any classifier g with DI(g) = δ can be

represented in the [0, 1]2 unit square as the line π1 = π0/δ.
Any classifier φ with BER(φ) = ε can be written as the func-
tion π1 = π0 + 1− 2ε.

Let us now fix the desired DI threshold τ, corresponding
to the line π1 = π0/τ. Notice that the region {(π0, π1) |
π1 ≥ π0/τ} is the region where one would make a finding of
disparate impact (for τ = 0.8).

Now given a classification that admits a finding of disparate
impact, we can compute β. Consider the point (β, β/τ) at
which the line π0 = β intersects the DI curve π1 = π0/τ. This

point lies on the BER contour (1 + β− β/τ)/2 = ε, yielding
ε = 1/2− β( 1

τ − 1)/2 In particular, for the DI threshold of
τ = 0.8, the desired BER threshold is

ε =
1
2
− β

8
and so disparate impact implies predictability.

With this infrastructure in place, the other direction of the
proof is now easy. To show that predictability implies dis-
parate impact, we will use the same idea of a purely biased
classifier. Suppose there is a function f : Y → X such that
BER( f (y), x) ≤ ε. Let ψ−1 : X → C be the inverse purely
biased mapping, i.e. ψ−1(1) = YES and ψ−1(0) = NO. Let
g : Y → C = ψ−1 ◦ f . Using the same representation as before,
this gives us π1 ≥ 1 + π0 − 2ε and therefore

π0
π1
≤ π0

1 + π0 − 2ε
= 1− 1− 2ε

π0 + 1− 2ε

Recalling that DI(g) = π0
π1

and that π0 = β yields DI(g) ≤
1− 1−2ε

β+1−2ε = τ. For τ = 0.8, this again gives us a desired BER

threshold of ε = 1
2 −

β
8 .

Note that as ε approaches 1/2 the bound tends towards the
trivial (since any binary classifier has BER at most 1/2). In
other words, as β tends to 0, the bound becomes vacuous.

This points to an interesting line of attack to evade a dis-
parate impact finding. Note that β is the (class conditioned)
rate at which members of the protected class are selected. Con-
sider now a scenario where a company is being investigated
for discriminatory hiring practices. One way in which the
company might defeat such a finding is by interviewing (but
not hiring) a large proportion of applicants from the protected
class. This effectively drives β down, and the observation
above says that in this setting their discriminatory practices
will be harder to detect, because our result can not guarantee
that a classifier will have error significantly less than 0.5.

Observe that in this analysis we use an extremely weak
classifier to prove the existence of a relation between pre-
dictability and disparate impact. It is likely that using a better
classifier (for example the Bayes optimal classifier or even a
classifier that optimizes BER) might yield a stronger relation-
ship between the two notions.

Dealing with uncertainty. In general, β might be hard to
estimate from a fixed data set, and in practice we might only
know that the true value of β lies in a range [β`, βu]. Since
the BER threshold varies monotonically with β, we can merely
use β` to obtain a conservative estimate.

Another source of uncertainty is in the BER estimate itself.
Suppose that our classifier yields an error that lies in a range
[γ, γ′]. Again, because of monotonicity, we will obtain an
interval of values [τ, τ′] for DI. Note that if (using a Bayesian
approach) we are able to build a distribution over BER, this
distribution will then transfer over to the DI estimate as well.

4.2 Certifying (lack of) DI with SVMs
The above argument gives us a way to determine whether a

data set is potentially amenable to disparate impact (in other
words, whether there is insufficient information to detect a
protected attribute from the provided data).

Algorithm. We run a classifier that optimizes BER on the given
data set, attempting to predict the protected attributes X from



the remaining attributes Y. Suppose the error in this predic-
tion is ε. Then using the estimate of β from the data, we can
substitute this into the equation above and obtain a thresh-
old ε′. If ε′ < ε, then we can declare the data set free from
disparate impact.

Assume that we have an optimal classifier with respect to
BER. Then we know that all classifiers will incur a BER of at
least ε. By Theorem 4.1, this implies that no classifier on D will
exhibit disparate impact, and so our certification is correct.

The only remaining question is what classifier is used by
this algorithm. The usual way to incorporate class sensitivity
into a classifier is to use different costs for misclassifying
points in different classes. A number of class-sensitive cost
measures fall into this framework, and there are algorithms
for optimizing these measures (see [12] for a review), as well
as a general (but expensive) method due to Joachims that
does a clever grid search over a standard SVM to optimize a
large family of class-sensitive measures [7]. Oddly, BER is not
usually included among the measures studied.

Formally, as pointed out by Zhao et al [26], BER is not a
cost-sensitive classification error measure because the weights
assigned to class-specific misclassification depend on the rel-
ative class sizes (so they can be normalized). However, for
any given data set we know the class sizes and can reweight
accordingly. We adapt a standard hinge-loss SVM to incorpo-
rate class-sensitivity and optimize for (regularized) BER. This
adaptation is standard, and yields a cost function that can be
optimized using AdaBoost. For more details, see the extended
version of this paper [5].

5. REMOVING DISPARATE IMPACT
Once Bob’s certification procedure has made a determina-

tion of (potential) disparate impact on D, Alice might request
a repaired version D̄ of D, where any attributes in D that could
be used to predict X have been changed so that D̄ would be
certified as ε-fair. We now describe how to construct such a
set D̄ = (X, Ȳ, C) such that D̄ does not have disparate impact
in terms of protected attribute X. While for notational sim-
plicity we will assume that X is used directly in what follows,
in practice the attribute used to stratify the data for repair
need not directly be the protected attribute or even a single
protected attribute. In the case of the Texas Top 10% Rule that
admits the top ten percent of every high school class in Texas
to the University of Texas [22], the attribute used to stratify is
the high school attended, which is an attribute that correlates
with race. If repair of multiple protected attributes is desired,
the joint distribution can be used to stratify the data. (We will
look into the effects of this experimentally in Section 6.2.)

Of course, it is important to change the data in such a way
that predicting the class is still possible. Specifically, our goal
will be to preserve the relative per-attribute ordering as fol-
lows. Given protected attribute X and a single numerical
attribute Y, let Yx = Pr(Y|X = x) denote the marginal distri-
bution on Y conditioned on X = x. Let Fx : Yx → [0, 1] be
the cumulative distribution function for values y ∈ Yx and
let F−1

x : [0, 1] → Yx be the associated quantile function (i.e
F−1

x (1/2) is the value of y such that Pr(Y ≥ y|X = x) = 1/2).
We will say that Fx ranks the values of Yx.

Let Ȳ be the repaired version of Y in D̄. We will say that
D̄ strongly preserves rank if for any y ∈ Yx and x ∈ X, its
“repaired” counterpart ȳ ∈ Ȳx has Fx(y) = Fx(ȳ). Strongly
preserving rank in this way, despite changing the true values
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Figure 1: Consider the fake probability density functions
shown here where the blue curve shows the distribution
of SAT scores (Y) for X = female, with µ = 550, σ = 100,
while the red curve shows the distribution of SAT scores
for X = male, with µ = 400, σ = 50. The resulting fully
repaired data is the distribution in black, with µ = 475, σ =
75. Male students who originally had scores in the 95th
percentile, i.e., had scores of 500, are given scores of 625
in the 95th percentile of the new distribution in Ȳ, while
women with scores of 625 in Ȳ originally had scores of 750.

of Y, appears to allow Alice’s algorithm to continue choosing
stronger (higher ranked) applicants over weaker ones. We
present experimental evidence for this in Section 6.

With this motivation, we now give a repair algorithm that
strongly preserves rank and ensures that D̄ = (X, Ȳ, C) is fair
(i.e., is ε-fair for ε = 1/2). In the discussion that follows, for
the sake of clarity we will treat Y as a single attribute over a
totally-ordered domain. To handle multiple totally-ordered
attributes Y1, . . . , Yk we will repair each attribute individually.

We define a “median” distribution A in terms of its quantile
function F−1

A : F−1
A (u) = median x∈X F−1

x (u). The choice of
the term “median” is not accidental.

LEMMA 5.1. Let A be a distribution such that F−1
A (u) =

median x∈X F−1
x (u). Then A is also the distribution minimizing

∑x∈X d(Yx, C) over all distributions C, where d(·, ·) is the earth-
mover distance on R.

PROOF. For any two distributions P and Q on the line, the
earthmover distance (using the underlying Euclidean distance
d(x, y) = |x− y| as the metric) can be written as

d(P, Q) =
∫ 1

0
|F−1

P (u)− F−1
Q (u)|du

In other words, the map P 7→ F−1
P is an isometric embedding

of the earthmover distance into `1.
Consider now a set of points p1, . . . , pn ∈ `1. Their 1-

median – the point minimizing ∑i ‖pi − c‖1 – is the point
whose jth coordinate is the median of the jth coordinates of
the pi. This is precisely the definition of the distribution A (in
terms of F−1

A ).

Algorithm. Our repair algorithm creates Ȳ, such that for all
y ∈ Yx, the corresponding ȳ = F−1

A (Fx(y)). The resulting D̄ =

(X, Ȳ, C) changes only Y while the protected attribute and
class remain the same as in the original data, thus preserving
the ability to predict the class. See Figure 1 for an example.



Notes. We note that this definition is reminiscent of the
method by which partial rankings are combined to form a
total ranking. The rankings are “Kemeny”-ized by finding
a ranking that minimizes the sum of distances to the origi-
nal rankings. However, there is a crucial difference in our
procedure. Rather than merely reorganizing the data into
a total ranking, we are modifying the data to construct this
consensus distribution.

THEOREM 5.1. D̄ is fair and strongly preserves rank.

PROOF. In order to show that D̄ strongly preserves rank, re-
call that we would like to show that Fx(y) = Fx(ȳ) for all x ∈
X, ȳ ∈ Ȳx, and y ∈ Yx. Since, by definition of our algorithm,
ȳ = F−1

A (Fx(y)), we know that Fx(ȳ) = Fx(F−1
A (Fx(y))), so

we would like to show that Fx(F−1
A (z)) = z for all z ∈ [0, 1]

and for all x. Recall that F−1
A (z) = median x∈X F−1

x (z).
Suppose the above claim is not true. Then there are two

values z1 < z2 and some value x such that Fx(F−1
A (z1)) >

Fx(F−1
A (z2)). That is, there is some x and two elements y1 =

F−1
A (z1), y2 = F−1

A (z2) such that y1 > y2. Now we know
that y1 = median x∈X F−1

x (z1). Therefore, if y1 > y2 it must
be that there are strictly less than |X|/2 elements of the set
{F−1

x (z1)|x ∈ X} below y2. But by the assumption that z1 <
z2, we know that each element of {F−1

x (z1)|x ∈ X} is above
the corresponding element of {F−1

x (z2)|x ∈ X} and there are
|X|/2 elements of this latter set below y2 by definition. Hence
we have a contradiction and so a flip cannot occur, which
means that the claim is true.

Note that the resulting Ȳx distributions are the same for all
x ∈ X, so there is no way for Bob to differentiate between the
protected attributes. Hence the algorithm is 1-fair.

This repair has the effect that if you consider the Ȳ values
at some rank z, the probability of the occurrence of a data
item with attribute x ∈ X is the same as the probability of the
occurrence of x in the full population. This informal observa-
tion gives the intuitive backing for the lack of predictability
of X from Ȳ and, hence, the lack of disparate impact in the
repaired version of the data.

5.1 Partial Repair
Since the repair process outlined above is likely to degrade

Alice’s ability to classify accurately, she might want a partially
repaired data set instead. This in effect creates a tradeoff be-
tween the ability to classify accurately and the fairness of the
resulting data. This tradeoff can be achieved by simply mov-
ing each inverse quantile distribution only part way towards
the median distribution. Let λ ∈ [0, 1] be the amount of re-
pair desired, where λ = 0 yields the unmodified data set and
λ = 1 is the fully repaired version described above. Recall
that Fx : Yx → [0, 1] is the function giving the rank of y. The
repair algorithm for λ = 1 creates Ȳ such that ȳ = F−1

A (Fx(y))
where A is the median distribution.

In the partial repair setting we will be creating a differ-
ent distribution Ax for each protected value x ∈ X and set-
ting ȳ = F−1

Ax
(Fx(y)). Consider the ordered set of all y at

rank u in their respective conditional distributions i.e the set
U(u) = {F−1

x (u)|x ∈ X}. We can associate with U the cu-
mulant function UF(u, y) = |{y′ ≥ y|y ∈ U(u)}|/|U(u)| and
define the associated quantile function UF−1(u, α) = y where

UF(u, y) = α. We can restate the full repair algorithm in this
formulation as follows: for any (x, y), ȳ = UF−1(Fx(y), 1/2).

We now describe two different approaches to performing
a partial repair, each with their own advantages and disad-
vantages. Intuitively, these repair methods differ in which
space they operate in: the combinatorial space of ranks or the
geometric space of values.

5.1.1 A Combinatorial Repair
The intuition behind this repair strategy is that each item,

rather than being moved to the median of its associated distri-
bution, is only moved part of the way there, with the amount
moved being proportional (in rank) to its distance from the
median.

DEFINITION 5.1 (COMBINATORIAL REPAIR). Fix an x and
consider any pair (x, y). Let r = Fx(y) be the rank of y conditioned
on X = x. Suppose that in the set U(r) (the collection of all y′ ∈ Y
with rank r in their respective conditional distributions) the rank
of y is ρ. Then we replace y by ȳ ∈ U(r) whose rank in U(r) is
ρ′ = b(1− λ)ρ + λ/2c. Formally, ȳ = UF−1(r, ρ′). We call the
resulting data set D̄λ.

While this repair is intuitive and easy to implement, it does
not satisfy the property of strong rank preservation. In other
words, it is possible that two pairs (x, y) and (x, y′) with
y > y′ to be repaired in a way that ȳ < ȳ′. While this could
potentially affect the quality of the resulting data (we discuss
this in Section 6.2), it does not affect the fairness properties
of the repair. Indeed, we formulate the fairness properties of
this repair as a formal conjecture.

CONJECTURE 5.1. D̄λ is f (λ)-fair for a monotone function f .

5.1.2 A Geometric Repair
The algorithm above has an easy-to-describe operational

form. It does not however admit a functional interpretation
as an optimization of a certain distance function, like the full
repair. For example, it is not true that for λ = 1/2 the mod-
ified distributions Ȳ are equidistant (under the earthmover
distance) between the original unrepaired distributions and
the full repair. The algorithm we propose now does have this
property, as well as possessing a simple operational form. The
intuition is that rather than doing a linear interpolation in
rank space between the original item and the fully repaired
value, it does a linear interpolation in the original data space.

DEFINITION 5.2 (GEOMETRIC REPAIR). Let FA be the cu-
mulative distribution associated with A, the result performing a
full repair on the conditional cumulative distributions as described
in Section 5. Given a conditional distribution Fx(y), its λ-partial
repair is given by

F̄−1
x (α) = (1− λ)F−1

x (α) + λ(FA)
−1(α)

Linear interpolation allows us to connect this repair to the
underlying earthmover distance between repaired and unre-
paired distributions. In particular,

THEOREM 5.2. For any x, d(Yx, Ȳx) = λd(Yx, YA) where YA
is the distribution on Y in the full repair, and Ȳx is the λ-partial
repair. Moreover, the repair strongly preserves rank.

PROOF. The earthmover distance bound follows from the
proof of Lemma 5.1 and the isometric mapping between the



earthmover distance between Yx and Ȳx and the `1 distance be-
tween Fx and F̄x. Rank preservation follows by observing that
the repair is a linear interpolation between the original data
and the full repair (which preserves rank by Lemma 5.1).

5.2 Fairness / Utility Tradeoff
The reason partial repair may be desired is that increasing

fairness may result in a loss of utility. Here, we make this
intuition precise. Let D̄λ = (X, Ȳ, C) be the partially repaired
data set for some value of λ ∈ [0, 1] as described above (where
D̄λ=0 = D). Let ḡλ : Ȳ → C be the classifier with the utility
we are trying to measure.

DEFINITION 5.3 (UTILITY). The utility of a classifier ḡλ : Ȳ →
C with respect to some partially repaired data set D̄λ is

γ(ḡλ, D̄λ) = 1− BER(ḡλ(ȳ), c).

If the classifier ḡλ=0 : Y → C has an error of zero on the unre-
paired data, then the utility is 1. More commonly, γ(ḡλ=0, D̄λ=0) <
1. In our experiments, we will investigate how γ decreases as
λ increases.

6. EXPERIMENTS
We will now consider the certification algorithm and repair

algorithm’s fairness/utility tradeoff experimentally on three
data sets. The first is the Ricci data set at the heart of the Ricci
v. DeStefano case [21]. It consists of 118 test taker entries,
each including information about the firefighter promotion
exam taken (Lieutenant or Captain), the score on the oral
section of the exam, the written score, the combined score,
and the race of the test taker (black, white, or Hispanic). In
our examination of the protected race attribute, we will group
the black and Hispanic test takers into a single non-white
category. The classifier originally used to determine which
test takers to promote was the simple threshold classifier that
allowed anyone with a combined score of at least 70% to be
eligible for promotion [13]. Although the true number of
people promoted was chosen from the eligible pool according
to their ranked ordering and the number of slots available, for
simplicity in these experiments we will describe all eligible
candidates as having been promoted. We use a random two-
thirds / one-third split for the training / test data.

The other two data sets we will use are from the UCI Ma-
chine Learning Repository2. So that we can compare our
results to those of Zemel et al. [25], we will use the same data
sets and the same decisions about what constitutes a sensitive
attribute as they do. First, we will look at the German credit
data set, also considered by Kamiran and Calders [8]. It con-
tains 1000 instances, each of which consists of 20 attributes
and a categorization of that instance as GOOD or BAD. The
protected attribute is Age. In the examination of this data
set with respect to their discriminatory measure, Kamiran
and Calders found that the most discrimination was possible
when splitting the instances into YOUNG and OLD at age
25 [8]. We will discretize the data accordingly to examine this
potential worst case. We use a random two-thirds / one-third
split for the training / test data.

We also look at the Adult income data set, also considered
by Kamishima et al. [10]. It contains 48,842 instances, each
of which consists of 14 attributes and a categorization of that
person as making more or less than $50,000 per year. The
2http://archive.ics.ucu.edu/ml

protected attribute we will examine is Gender. Race is also an
attribute in the data, and it will be excluded for classification
purposes, except for when examining the effects of having
multiple protected attributes - in this case, race will be catego-
rized as white and non-white. The training / test split given
in the original data is also used for our experiments.

For each of these data sets, we look at a total of 21 ver-
sions of the data - the original data set plus 10 partially or
fully repaired attribute sets for each of the combinatorial and
geometric partial repairs. These are the repaired attributes
for λ ∈ [0, 1] at increments of 0.1. Data preprocessing was
applied before the partial repair algorithm was run.

Preprocessing. Datasets were preprocessed as follows:

1. Remove all protected attributes from Y. This ensures
that we are not trying to learn a classifier that depends
on other protected attributes that might correlate with
the target protected attribute. (The repair process does
still get to know X.)

2. Remove all unordered categorical features since our
repair procedure assumes that the space of values is
ordered. Ordered categories are converted to integers.3

3. Scale each feature so that the minimum is zero and the
maximum is one.

Classifiers. Three different classifiers were used as oracles
for measuring discrimination (under the disparate impact
measure and a measure by Zemel et al. [25]), and to test the
accuracy of a classification after repair. The classifiers used
for our experimental tasks were provided by the Scikit-learn4

python package.

LR: Logistic Regression: Liblinear’s [4] logistic regression
algorithm for L2 regularization and logistic loss. The
classifier was configured to weight the examples auto-
matically so that classes were weighted equally.

SVM: Support Vector Machine: Liblinear’s [4] linear SVM al-
gorithm for L2 regularization and L2 loss. The classifier
was configured to weight the examples automatically
so that classes were weighted equally.

GNB: Gaussian Naïve Bayes: Scikit-Learn’s naïve Bayes algo-
rithm with a balanced class prior.

Parameter selection and cross-validation. LR and SVM clas-
sifiers were cross-validated using three-fold cross validation
and the best parameter based on BER was chosen. We cross-
validated the parameter controlling the tradeoff between reg-
ularization and loss, and 13 parameters between 10−3 and
103, with logarithms uniformly spaced, were searched.

Repair details. The repair procedure requires a ranking of
each attribute. The numeric values and ordered categorical
attributes were ordered in the natural way and then quantiles
were used as the ranks. Since the repair assumes that there
is a point at each quantile value in each protected class, the
3On the Adult Income data, it happens that all missing values
were of these unordered categorical columns, so no data sets
had missing values after this step.
4http://scikit-learn.org.

http://archive.ics.ucu.edu/ml
http://scikit-learn.org
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Figure 2: Lack of predictability (BER) of the protected at-
tributes on the German Credit Adult Income, and Ricci
data sets as compared to the disparate impact found in
the test set when the class is predicted from the non-
protected attributes. The certification algorithm guarantees
that points to the right of the BER threshold are also above
τ = 0.8, the threshold for legal disparate impact. For clarity,
we only show results using the combinatorial repair, but
the geometric repair results follow the same pattern.

quantiles were determined in the following way. For each
attribute, the protected class with the smallest number of
members was determined. This size determined how many
quantile buckets to create. The other protected classes were
then appropriately divided into the same number of quantile
buckets, with the median value in each bucket chosen as a
representative value for that quantile. Each quantile value in
the fully repaired version is the median of the representative
values for that quantile. The combinatorial partial repair
determines all valid values for an attribute and moves the
original data part way to the fully repaired data within this
space. The geometric repair assumes all numeric values are
allowed for the partial repair.

6.1 Certification
The goal in this section is to experimentally validate our

certification algorithm, described in subsection 4.2. On each
of the data sets described above, we attempt to predict the
protected attribute from the remaining attributes. The re-
sulting BER is compared to DI(g) where g : Y → C, i.e., the
disparate impact value as measured when some classifier at-
tempts to predict the class given the non-protected attributes.
From the underlying data, we can calculate the BER threshold
ε = 1/2− β/8. Above this threshold, any classifier applied to
the data will have disparate impact. The threshold is chosen
conservatively so as to preclude false positives (times when
we falsely declare the data to be safe from disparate impact).

In Figure 2 we can see that there are no data points greater
than the BER threshold and also much below τ = 0.8, the
threshold for legal disparate impact. The only false positives
are a few points very close to the line. This is likely because
the β value, as measured from the data, has some error. We
can also see, from the points close to the BER threshold line

on its left but below τ that while we chose the threshold con-
servatively, we were not overly conservative. Still, using a
classifier other than the purely biased one in the certification
algorithm analysis might allow this threshold to be tightened.

The points in the upper left quadrant of these charts repre-
sent false negatives of our certification algorithm on a specific
data set and a specific classifier. However, our certification
algorithm guarantees lack of disparate impact over any classi-
fier, so these are not false negatives in the traditional sense. In
fact, when a single data set is considered over all classifiers,
we see that all such data sets below the BER threshold have
some classifier that has DI close to or below τ = 0.8.

One seemingly surprising artifact in the charts is the vertical
line in the Adult Income data chart at BER = 0.5 for the
GNB repair. Recall that the chart is based off of two different
confusion matrices - the BER comes from predicting gender
while the disparate impact is calculated when predicting the
class. In a two class system, the BER cannot be any higher
than 0.5, so while the ability to predict the gender cannot get
any worse, the resulting fairness of the class predictions can
still improve, thus causing the vertical line in the chart.

6.2 Fairness / Utility Tradeoff
The goal in this section is to determine how much the partial

repair procedure degrades utility. Using the same data sets as
described above, we will examine how the utility (see Defi-
nition 5.3) changes DI (measuring fairness) increases. Utility
will be defined with respect to the data labels. Note that this
may itself be faulty data, in that the labels may not themselves
provide the best possible utility based on the underlying, but
perhaps unobservable, desired outcomes. For example, the re-
sults on the test from the Ricci data may not perfectly measure
a firefighter’s ability and so outcomes based on that test may
not correctly predict who should be promoted. Still, in the
absence of knowledge of more precise data, we will use these
labels to measure utility. For the Ricci data, which is unla-
beled, we will assume that the true labels are those provided
by the simple threshold classifier used on the non-repaired
version of the Ricci data, i.e. that anyone with a score of at
least 70% should pass the exam. Disparate impact (DI) for all
data sets is measured with respect to the predicted outcomes
on the test set as differentiated by protected attribute. The
SVM described above is used to classify on the Adult Income
and German Credit data sets while the Ricci data uses the sim-
ple threshold classifier. The utility (1− BER) shown is based
on the confusion matrix of the original labels versus the labels
predicted by these classifiers.

The results, shown in Figure 3, demonstrate the expected
decay over utility as fairness increases. Each unrepaired data
set begins with DI < 0.8, i.e., it would fail the 80% rule, and
we are able to repair it to a legal value. For the Adult Income
data set, repairing the data fully only results in a utility loss
from about 74% to 72%, while for the German Credit data,
repairing the data fully reduces the utility from about 72% to
50% - essentially random. We suspect that this difference in
decay is inherent to the class decisions in the data set (and the
next section will show that other existing fairness repairs face
this same decay). We suspect that the lack of linearity in the
utility decay in the German Credit data after it has fairness
greater than DI = 0.8 is due to this low utility.

Looking more closely at the charts, we notice that some of
the partially repaired data points have DI > 1. Since DI is
calculated with respect to fixed majority and minority classes,
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Figure 3: Disparate impact (DI) vs. utility (1-BER) from
our combinatorial and geometric partial repair processes
using the SVM to classify on the Adult Income and Ger-
man Credit data sets and the simple threshold classifier on
the Ricci data set. Recall that only points with DI ≥ τ = 0.8
are legal. DI = 1.0 represents full fairness.

this happens when the classifier has given a good outcome to
proportionally more minority than majority class members.
These points should be considered unfair to the majority class.

Figure 3 also shows that combinatorial and geometric re-
pairs have similar DI and utility values for all partial repair
data sets. This means that either repair can be used.

Multiple Protected Attributes. Our repair procedure can
operate over the joint distribution of multiple protected at-
tributes. To examine how this affects utility, we considered
the Adult Income data set repaired by gender only, race only,
and over both gender and race. For the repairs with respect
to race, a binary racial categorization of white and non-white
is used. Repairs with respect to both race and gender are
taken over the joint distribution. In the joint distribution case,
the DI calculated is the average of the DI of each of the three
protected sets (white women, non-white men, and non-white
women) with respect to the advantaged group (white men).
The classifier used to predict the class from the non-protected
attributes is the SVM described earlier.

The results, shown in Figure 4, show that the utility loss
over the joint distribution is close to the maximum of the util-
ity loss over each protected attribute considered on its own. In
other words, the loss does not compound. These good results
are likely due in part to the size of the data set allowing each
subgroup to still be large enough. On such data sets, allowing
all protected attributes to be repaired appears reasonable.

6.3 Comparison to previous work
Here, we compare our results to related work on the Ger-

man credit data and Adult income data sets. Logistic regres-
sion is used as a baseline comparison, fair naive Bayes is the
solution from Kamiran and Calders [8], regularized logistic
regression is the repair method from Kamishima et al. [10],
and learned fair representations is Zemel et al.’s solution [25].
All comparison data is taken from Zemel et al.’s implementa-
tions [25]. Zemel et al. define discrimination as (1− α)− β. So
that increasing Zemel scores mean that fairness has increased,
as is the case with DI, we will look at the Zemel fairness score
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Figure 4: Disparate impact (DI) vs. utility (1-BER) from our
combinatorial and geometric partial repair processes using
the SVM as the classifier. For clarity in the figure, only the
combinatorial repairs are shown, though the geometric re-
pairs follow the same pattern.

which we define as 1− ((1− α) − β) = 2 · BER. Accuracy
is the usual rate of successful classification. Unlike the com-
pared works, we do not choose a single partial repair point.
Figure 5 shows our fairness and accuracy results for both com-
binatorial and geometric partial repairs for values of λ ∈ [0, 1]
at increments of 0.1 using all three classifiers described above.

Figure 5 shows that our method can be flexible with respect
to the chosen classifier. Since the repair is done over the data,
we can choose a classification algorithm appropriate to the
data set. For example, on the Adult Income data set the repairs
based on Naïve Bayes have better accuracy at high values of
fairness than the repairs based on Logistic Regression. On
the German and Adult data sets our results show that for any
fairness value a partially repaired data set at that value can
be chosen and a classifier applied to achieve accuracy that is
better than competing methods.

Since the charts in Figure 5 include unrepaired data, we
can also separate the effects of our classifier choices from the
effects of the repair. In each classifier repair series, the data
point with the lowest Zemel fairness (furthest to the left) is
the original data. Comparing the original data point when
the LR classifier was used to the LR classifier used by Zemel
et al. as a comparison baseline, we see a large jump in both
fairness and accuracy. Configuring the classifier to weight
classes equally may have accounted for this improvement.

7. LIMITATIONS AND FUTURE WORK
Our experiments show a substantial difference in the per-

formance of our repair algorithm depending on the specific
algorithms we chose. Given the myriad classification algo-
rithms used in practice, there is a clear need for a future
systematic study of the relationship between dataset features,
algorithms, and repair performance.

In addition, our discussion of disparate impact is necessar-
ily tied to the legal framework as defined in United States
law. It would be valuable in future work to collect the legal
frameworks of different jurisdictions, and investigate whether
a single unifying formulation is possible.

Finally, we note that the algorithm we present operates
only on numerical attributes. Although we are satisfied with
its performance, we chose this setting mostly for its relative
theoretical simplicity. A natural avenue for future work is
to investigate generalizations of our repair procedures for
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Figure 5: Zemel fairness vs. accuracy from our combinato-
rial and geometric partial repairs as compared to previous
work. Legend: RLR, Regularized Logistic Regression [10];
LFR, Learned Fair Representations [25]; FNB, Fair Naïve
Bayes [8]; GNB, Gaussian Naïve Bayes with balanced prior;
LR, Logistic Regression; SVM, Support Vector Machine.

datasets with different attribute types, such as categorical
data, vector-valued attributes, etc.
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