
Hashedcubes: Simple, Low Memory, Real-Time Visual
Exploration of Big Data

Cı́cero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger, João L. D. Comba

Overview of USA tweets between Nov 2011 and Jun 2012 NYC Green Taxis pick-up Brightkite in Europe Brightkite temporal series

Fig. 1. Hashedcubes accelerates queries used in a wide range of interactive exploratory visualizations, such as heatmaps, time series
plots, histograms and binned scatterplots, and supports brushing and linking across spatial, categorical and temporal dimensions. In
this figure, we show some example visualizations backed by Hashedcubes. The left image shows 210.6 million tweets from November
2011 to June 2012, highlighting the activity during Superbowl XLVI. The central image shows 24.5 million pick-up locations of NYC
green taxis rides from January 2014 to June 2015. On the right, the visualizations show different aspects of 4.5 million Brightkite
check-ins, a social network. Hashedcubes balances low memory usage, fast running times, and simple implementation; it allows
interactive exploration of datasets that previously either required a prohibitive amount of memory or uncomfortably large latencies.

Abstract—We propose Hashedcubes, a data structure that enables real-time visual exploration of large datasets that improves the
state of the art by virtue of its low memory requirements, low query latencies, and implementation simplicity. In some instances,
Hashedcubes notably requires two orders of magnitude less space than recent data cube visualization proposals. In this paper, we
describe the algorithms to build and query Hashedcubes, and how it can drive well-known interactive visualizations such as binned
scatterplots, linked histograms and heatmaps. We report memory usage, build time and query latencies for a variety of synthetic and
real-world datasets, and find that although sometimes Hashedcubes offers slightly slower querying times to the state of the art, the
typical query is answered fast enough to easily sustain a interaction. In datasets with hundreds of millions of elements, only about 2%
of the queries take longer than 40ms. Finally, we discuss the limitations of data structure, potential spacetime tradeoffs, and future
research directions.

Index Terms—Scalability, data cube, multidimensional data, interactive exploration.

1 INTRODUCTION

Designers of interactive visualization systems face serious challenges
in the presence of large, multidimensional datasets. On one side, naive
implementations of repeated linear scans of the dataset of interest no
longer offer acceptable latencies: this makes simple data structures
no longer attractive. On the other side, sophisticated implementations
of precomputed indices built specifically for visualization have been
proposed recently. These offer attractive query times, but their imple-
mentations are not trivial to integrate with existing systems, require
GPU support, or have another similar downside. This paper provides
an affirmative answer to the following question: is there a simple data
structure that offers much of the performance of the more sophisti-
cated indices, while maintaining a relatively-low memory footprint and
implementation simplicity?

Specifically, we present Hashedcubes, a novel data structure that
enables fast querying for interactive visualizations of large, multidimen-
sional, spatiotemporal datasets. Hashedcubes supports spatial queries,
such as counting events in a particular spatial region; categorical queries
over subsets of attribute values; and temporal queries over intervals of

• Cı́cero A. L. Pahins and João L. D. Comba are with the Federal University
of Rio Grande do Sul. E-mail: {calpahins,comba}@inf.ufrgs.br.

• Sean A. Stephens and Carlos Scheidegger are with the University of
Arizona. E-mail: {seanastephens,cscheid}@email.arizona.edu.

any granularity. As we report on Section 6, a typical query is returned
in under 30 milliseconds in single-threaded execution. As a practical
matter, Hashedcubes was designed to target the amount of main mem-
ory of a modern desktop or laptop personal computer (on the order of
16 to 32GB of main memory). In summary, this paper contributes:

• a simple data structure for real-time exploratory visualization
of large multidimensional, spatiotemporal datasets, advancing
the state of the art especially with respect to implementation
simplicity and memory usage,

• an experimental validation of a prototype implementation of
Hashedcubes, including a suite of experiments to assess query
time, memory usage, and build time of the data structure on
synthetic and real-world datasets, and

• an extended discussion of the trade-offs enabled by Hashedcubes,
including limitations and open research questions.

2 RELATED WORK

In this section we will focus on work directly related to interactive
visual analysis of big data. For a more comprehensive list of papers,
we refer the reader to the surveys on big data analysis [15], big data
visualization [3], geospatial big data analysis [31] and challenges in
big data implementation [18, 36, 22].

The need for low latency in large databases is a popular theme in
the literature [5, 40, 10]. BlinkDB [2] builds a carefully-constructed

stratified sample of the dataset, which allows interactive latencies in ap-
proximate queries over multiple terabytes of data. In essence, BlinkDB
provides infrastructure such that Hellerstein et al.’s online aggregation
has fast convergence properties [20]. ScalarR improves performance
by manipulating physical query plans and computing a dynamic reduc-
tion of query sets based on screen resolution [7]; it is an early, central
example of explicitly taking peculiarities of a visualization setup in a
DB account. 3W is a search framework for geo-temporal stamped doc-
uments that allows fast searches over spatial and text dimensions [37].
Forecache [6] improves performance by predicting user actions ahead
of the actual queries being issued.

The seminal paper of Gray et al. [17] introduced the data cube
concept, which laid the foundation for many other methods [34, 32, 11],
including our proposal. A data cube can be seen as a hierarchical
aggregation of all data dimensions in an n-dimensional lattice. Its main
disadvantage is its memory consumption, which becomes impractical
as the number of dimensions increases. To address this problem, some
approaches describe ways to compress data cubes, such as Dwarf [41],
or build on distributed databases to cope with scale requirements [27].

VisReduce [23] is an approach to data aggregation which computes
visualization results in a distributed fashion. It uses a modified MapRe-
duce [13] algorithm and data compression. Its main drawback is that
interaction operations require on-demand aggregations. Thus, the final
result is obtained only after the costly transfer over the network of par-
tial and final aggregations. As a rule of thumb, on-demand computation
is problematic for visual analysis because of latency. As Liu and Heer
describe [33], latencies of as little as half a second can affect the overall
quality of an analyst’s data exploration process. A popular alternative
to hide latency is to use sampling, and report uncertainty estimates as
soon as they are available [14]. Similarly, Stolper et al. describe a
general framework for progressive approach for visual analytics [42].

The most recent trend in research at the intersection of data manage-
ment and visualizations is the explicit acknowledgement of the human
perceptual system. Wu et al. suggest that database engines should
explicitly optimize for perceptual constraints, by for example including
the visual specification into the physical query planning process [45].
Jugel et al. offer a technique that is one such example: the query algo-
rithms described there return approximate results which nevertheless
rasterize to the same image as the exact query result would [25, 26];
ScalarR [7] is another example, mentioned earlier in this section.

Closest to Hashedcubes are imMens [34] and Nanocubes [32]. The
imMens approach combines data reduction, multivariate data tiles, and
parallel query processing(using a GPU) to minimize both data cube
memory usage and query latency. Its multivariate data tile methods are
based on the observation that for any pair of 1D or 2D binned plots,
the maximum number of dimensions needed to support brushing and
linking is four. Thus, an n-dimensional data cube can be decomposed
into a collection of smaller 3- or 4-dimensional projections. Further-
more, these decomposed data cubes are segmented into multivariate
tiles, like the ones used by Google Maps. On the other hand, imMens
lacks support for compound brushing in more than four dimensions. In
comparison, Hashedcubes support any number of dimensions, even if
at a potential cost in query latency. Nanocubes is a compact variation of
a data cube that can handle a large number of dimensions. It defines a
search key that is used to combine aggregations of independent dimen-
sions at varying levels of detail and to maximize shared links across
the data structure. Hashedcubes is an alternative to Nanocubes that
eschews a large number of aggregations, allowing both a more compact
representation and a much simpler implementation. Hashedcubes uses
a partial ordering scheme combined with the notion of pivots [35, 38]
to allow fast queries and a simple data structure layout.

BigVis [44] is an R package for the visualization of large datasets
and statistical modeling that can store more sophisticated event statis-
tics of events in its bins. Hashedcubes can be extended to include the
additional functionality of BigVis. The support for the visualization
of origin-destination (OD) data is requested in several applications
that handle trajectory data. OD Taxi data visualization [24] and taxi
trajectory data visualizations are discussed in [21]. One particularly
favorable use case for Hashedcubes is in fact the visual analysis of

origin-destination data. The interleaved scheme used in Hashedcubes
allows sufficiently-fast queries, while requiring significantly less mem-
ory than Nanocubes and imMens.

3 HASHEDCUBES

In this section we will describe the algorithms for building and querying
a Hashedcubes. Before giving the full algorithms, however, we will give
some intuition on how it works. Hashedcubes combines a few different
ideas, and it is easier to see how they work together by progressively
building on the properties it exploits. These include hierarchical array
partitions, stable sorting, and commutativity of the summaries of a list
under permutations of the list.

3.1 Some intuition
First, we note that the fundamental unit we want to visualize in large-
scale visualizations such as heatmaps and histograms is a count: “how
many events happened within this region at some point in time?” “How
many events happened on a Tuesday?”, and so on. We describe below
the intuition behind answering such queries from data stored in arrays.

The following observation is trivial but important: the size of an
array does not change when we shuffle it, and so we have much free-
dom in choosing the order of its elements. The second observation is
that when data is stored in a contiguous array, there is a convenient
representation for some subsets of this array: we can represent a subset
S of elements from an array A by a pair of indices (b,e) such that all
elements A[i] for which b ≤ i < e are considered to belong to S. We call
this pair a pivot. If we partition the elements of an array in a certain set
of non-overlapping subsets, we can always rearrange the elements such
that the chosen subsets of the partition can be represented by pivots (i.e.
the subsets are contiguous along the array). In other words, we can rep-
resent a partition by permuting the array and storing the corresponding
array of pivots. This representation of a partition allows us to, among
other things, quickly skip large runs of the data array, while remaining
simple and compact. Thirdly, this rearrangement of a partition also has
significant freedom in its choice: as long as the partition is respected,
we can choose the internal order of each subset arbitrarily. Crucially,
we can think of each subset of the partition as an array in itself —after
all, its elements are all contiguously stored as well— and so we can im-
pose further partitions on these subsets, hierarchically. This reordering
does not invalidate the first pivot representation, as long as our sorting
is stable with respect to the first partition.

Now imagine a hypothetical network logging dataset in which we
log packets that reach a particular server, and that we are interested in
three attributes: day of week (d), hour of day (h), and network port (p)
requested. In order to build a Hashedcubes data structure, we need to
decide on an ordering of these attributes with which to sort the array
hierarchically (note that we discuss performance consequences of these
choices in Section 7). For this example, assume we will sort in the order
we just gave. As we partition the array along each of the attributes,
we store the array of pivots that represents the partitions. Note that in
dimensions other than the first, this means that the finer partitions will
respect the previous sorting: for example, even though all events on a
Monday (or any given day of week) will be laid out contiguously in an
array, not all events with a given hour of day will be: only the events
with a given hour and day of week. Thus, as we go down the list of
dimensions in which we are partitioning, the array of pivots becomes
larger, and the partitions themselves become smaller. When the sorting
process is finally finished, we will have as many arrays of pivots as
there are dimensions in which we are interested in querying the dataset.
In our specific case, we will have three pivot arrays: one for the d
partition, one for the (d,h) partition, and one for the (d,h, p) partition.

How does this hierarchical sorting help answer queries quickly?
For example, if we are interested in plotting a histogram of requests
in which bins represent different hours of the day, it is clear that the
second pivot array is central for this query. Instead of scanning the
data array one element at a time, we can scan the array of pivots that
represent the sorting on (d,h). If we annotate the pivot arrays with
information about the range of attributes of the data they contain, we
will be able to make decisions about entire subsets of contiguous data

Schema: [[Latitude, Longitude], [Device], [Time]]

Device = Windows
Device = Linux

p0 p1

p2
p3

p5
p6

p7
p8

p4

p9

Schema = [[Latitude, Longitude],
[Device], [Time]]

0

2

1

3 Schema = [[Latitude, Longitude],
[Device], [Time]]

00 01
02 03

2

1

3

pNpoint

Nindex

[0-0]pivot

output Dimension N - <Type>

<value>bin

(a)

[0-0] [6-7] [8-9][3-4][1-2] [5-5]
W L W L W L

[0-2] [6-7] [8-9][3-5]
00 01 2 3

[0-5] [6-7] [8-9]
0 2 3

[0-9]

Hashedcubes Data Structure

Data After N Sorting Phases – Final Result

p6 p1 p3 p4 p5 p2 p7 p0 p9 p8
0 1 2 3 4 5 6 7 8 9

p1 p2 p0 p3 p4 p5 p6 p7 p9 p8
0 1 2 3 4 5 6 7 8 9

(c)

Dimension 3 - Temporal / … / Dimension N - <Type>

p6 p1 p3 p4 p5 p2 p7 p0 p9 p8
0 1 2 3 4 5 6 7 8 9

[0-9]

Input Data

Ro
ot

 P
iv

ot Sorting Phase
Q

ua
dt

re
e

Re
pr

es
en

ta
tio

n
Sorting Phase

De
vi

ce
 R

ep
re

se
nt

at
io

n
Sorting Phase

p1 p3 p4 p5 p2 p0 p6 p7 p9 p8

[0-5] [6-7] [8-9]

Dimension 1 - Spatial

0 1 2 3 4 5 6 7 8 9

p1 p2 p0 p3 p4 p5 p6 p7 p9 p8

[0-2] [6-7] [8-9][3-5]
0 1 2 3 4 5 6 7 8 9

[5-5]

p1 p2 p0 p3 p4 p5 p6 p7 p9 p8

[0-0] [6-7] [8-9][3-4][1-2]

Dimension 2 - Categorical

0 1 2 3 4 5 6 7 8 9

3

4

2

1

(b)

Sorting Phase

Building StepsGeographical Location and Device Data Before Sorting Phases

Quadtree Level 1 Quadtree Level 2

Fig. 2. Overall summary for building Hashedcubes. (a) Input dataset of points [p0,...,p9] under a spatial-categorical-temporal schema. The complete
process is described in Section 3. (b) Step-by-step illustration of the process for building arrays of sorted partitions, as explained in Section 3.2.
(c) Data is loaded (in any order) into a sequential memory and each record is associated with an index (rectangle in orange). The Hashedcubes
construction algorithm executes multiple sorting phases that result in a array of sorted partitions. After building a Hashedcubes, every pivot delimits a
partition. The stored Hashedcubes data structure is shown below. Its memory usage is mainly composed by pivots (each corresponding for two
32-bit integers) and attribute ranges (for the spatial dimension, the range is a 2-dimensional bounding box; for the categorical dimensions, the range
is simply an integer value).

at once. This is already somewhat useful, but imagine, for example,
a natural interactive query in which users are interested in studying
the same histogram as before, but for a particular subset of days of
the week. As we have currently described Hashedcubes, there is no
connection between the different pivot arrays, and so we cannot use
information about values in one dimension to speed up queries of a
different dimension. But this is easy to fix: after sorting on a finer
attribute, we annotate the “coarse pivots” with the range of pivots that
they represent in the next finer dimension. In our example, the array
of d pivots will be annotated with the boundaries they represent on
the array of (d,h) pivots; the (d,h) pivots, in turn, will be annotated
with the boundaries they represent in (d,h, p) pivots, and so on. Now
consider our working queries above again. In the same way that we
exploited the query attribute values to skip entire ranges of data values
by scanning the (d,h) pivot array, we can scan the d pivot array to skip
entire ranges of the (d,h) pivot array itself. This is the central insight
behind Hashedcubes. The astute reader will have undoutedbly noticed
that if we instead wanted to filter on network ports, we could not escape
a scan of a relatively large (d,h, p) pivot array. This is correct, and we
discuss this further in Section 3.6.

3.2 Construction Algorithm

The algorithm for building Hashedcubes requires an ordering of dataset
dimensions (e.g. first spatial, then categorical, and finally temporal). In
what follows, we will sometimes use terms like “above” and “below”
to refer to precedence relationships in this ordering. Once defined, a
linear array called Hash is associated with a root pivot [0,n−1], which
represents the initial partition containing the universe of n elements.
Each element of the Hash array is an integer that points to a record in
the dataset. The Hash array can be stored in a random or sequential
ordering. For every dimension of the indexing scheme, each partition
(here forth referred as a bin) of each object is indexed using pivots. Bins
have different interpretations for each dimension. Bins represent re-
gions for a spatial dimension, specific values or ranges for a categorical
dimension, or time intervals for a temporal dimension.In a input array
of n elements all entries belong to the same bin, represented by a pivot
[i0, i1]. Each dimension receives as input a list of pivots and outputs a

list of pivots. The first dimension receives as input the root pivot. Sub-
sequent dimensions receive the list of pivots created from the previous
dimensions. Sorting is performed in each bin to group elements. The
bin delimited by a given pivot is further refined as necessary to create
subset bins, represented by a new list of pivots. After processing each
dimension a new list of pivots is generated. A hierarchy of pivot lists
connects the bins created in each dimension.

Hashedcubes supports three distinct dimension types: spatial, cat-
egorical and temporal. The pivot hierarchy for these three dimension
types can be built in any order. Since a bin at a given dimension is a
subset of a bin in the previous dimension, a list of pivots represents
subsets for all previously defined dimensions. This allows to remove
dimensions from the representation, which is useful for managing mem-
ory consumption. The pivot hierarchy mimics a tree hierarchy since
each pivot represents a set that can be further divided into a variable
number of subset pivots, but notably, it does not store edges from one
dimension to another. Sibling pivots (nodes) are stored as lists. Because
each dimension stores collections of pivots, and pivot indices are always
offsets into the data array, dimensions can be treated independently of
each other. This allows the algorithm which executes queries to skip
dimensions that are not referred to by in the query. Furthermore, the
cardinality of the subset represented by a pivot can be directly obtained
from the pivot indices; this way, the size of an aggregation can be
directly determined by the list of pivots themselves.

We use the Figure 2 to illustrate different aspects of Hashedcubes.
The input data consists of 10 points using the schema [[Latitude, Lonn-
gitude], [Device], [Time]]. In Figure 2b step 1, the array is re-ordered
along the first level of the quadtree and three partitions are created
associated to quadrants 0, 2, and 3 (the quadrants that contain points).
Three pivots are created ([0-5], [6-7], [8-9]) to delimit these partitions.
In step 2 the array is re-ordered along the second level of the quadtree.
Note that only the first quadrant of the quadtree is subdivided in this
step, and therefore only the partition affected (associated to the pivot
[0..5])) is updated, leading to two new pivots ([0..2] and [3..5]). In steps
3 and 4 the process is similar, but using the categorical and temporal
dimensions to create further partitions in the data. In the top of Fig-
ure 2c we compare the input values of the array to the final re-ordering

[0-0] [4-4][2-2][1-1] [3-3]

A I I I A

[0-1] [2-3] [4-4]

0,1 1,0 1,1

[0-4]

0

[0-1] [3-3] [4-4][2-2]

01,10 10,01 11,01 10,10

(a) Hashedcubes (b) Nanocubes (adapted from [32])
Query Hashedcubes Nanocubes

Count[<0,1>] or Count[<10,01>,<11,01>] Pre-computed Pre-computed
Count[all<Android>] or Count[all<iPhone>] Compute On-the-fly Pre-computed

Fig. 3. A comparison between the computation of Nanocubes and
Hashedcubes. Note that Nanocubes pre-compute more aggregations,
which tends to lead to lower query times but larger memory consumption.
Hashedcubes, in contrast, uses a sparser set of preaggregations in its
query execution engine.

obtained after successive partitions of the data. In Hashedcubes it
suffices to keep the final array along the pivots created at each step
to recover the partitions created during these steps. In the bottom of
Figure 2c we show the list of pivots created at each step and stored by
Hashedcubes. The list of pivots correspond to partitions induced in the
first and second levels of the quadtree, and the categorical partition, in
this case if device used was Windows (W) or Linux (L).

In contrast to other data cube alternatives [17, 32, 34], Hashedcubes
does not precompute aggregations across every possible set of dimen-
sions. Instead, it leverages the pivot hierarchy to compute missing
pre-aggregations on-the-fly. Consider in Figure 3 the problem of com-
puting the number of all objects labeled as Android or iPhone in the
categorical dimension. Hashedcubes does not pre-compute this infor-
mation. Although this means that such queries will require a scan
over a potentially large portion of the array, the fact that Hashedcubes
stores these in an array (as opposed to a pointer-based data structure)
means that the aggregations can be computed relatively efficiently. In
fact, allowing these worst-case scenarios to occur is precisely what is
responsible for the low memory consumption in Hashedcubes. The
query algorithm is described in Section 3.6.

3.3 Spatial Dimensions
Efficiently answering queries involving spatial attributes typically re-
quires the use of hierarchical spatial data structures [39]. In Hashed-
cubes the spatial dimension is represented as a quadtree, a hierarchical
data structure often used to represent geo-spatial data where the space
is recursively divided into 4 regions [39]. Each quadtree node is associ-
ated with a pivot that delimits the objects contained in that quadrant.
If a query matches the exact region represented by a node, then the
pivot represents the aggregation result for that query. Otherwise, we
compute the minimal disjoint set of nodes that cover the query region.
We note that during an interactive session, the viewport region of the
screen can be interpreted as a spatial query. Although Hashedcubes can
process dimensions in any given order, in our experiments we chose to
use the spatial dimension first in the ordering of dimensions to increase
the speed in which geo-spatial queries can be answered.

The algorithm for building spatial dimensions associates each record
within each pivot range to its current quadtree quadrant. Sorting is
used to group records belonging to the same region, and consequently,
quadtree nodes store the pivot that delimits the records for that specific
subdivision. As we mentioned above, the schemas we use typically start
with spatial dimensions. Therefore, the input is a single pivot (root)
representing the data universe and only a unique quadtree is allocated.

Hashedcubes supports multiple spatial dimensions, but this process
is different from single spatial dimensions. Each spatial dimension is
associated with a quadtree. Instead of building each spatial dimension
sequentially, Hashedcubes interleaves the construction of each quadtree,
refining one level of each quadtree at a time. Consider a dataset of
phone calls, with two geographical locations, one from the caller and

Fig. 4. Multiple spatial dimensions. In this example one quadtree is
created for each of the two spatial dimensions, red and blue. The
quadtrees are used alternately in Hashedcubes to partition the data.

another from the receiver. The root of the quadtree represents all data.
At each level of the quadtree the records are subdivided according to the
current spatial attribute (e.g. odd and even levels can be associated to
origin and destination locations respectively). By using an interleaved
quadtree, queries with multiple region constraints are answered by
traversing a unique data structure, since quadtree nodes stores the
bounding box and the pivot that matches precisely to all aggregates
from that regions. Figure 4 illustrates this process.

Another important aspect of the Hashedcubes quadtree implemen-
tation is the minimum leaf size. Every dimension output is the input
for the following dimensions, while each pivot is subsequently refined
to represent subsets of specific attributes. Smaller pivots cause the
creation of a greater number of subsets. Consider Figure 2d. For every
input of the spatial dimension, it can at most output 22n subsets, where
n is the maximum quadtree subdivision. For every input of categorical
dimension it can output at most two subsets (windows or linux). Thus,
the output size is directly dependent on the input size. The leaf size is a
crucial factor for memory usage and performance of Hashedcubes, and
is discussed in Section 7.

3.4 Categorical Dimensions
Categorical attributes of multidimensional datasets are usually divided
into specific values or ranges. The processing of such attributes in
Hashedcubes produces a list of pivots that groups data in bins for each
categorical value or range. By varying the granularity of the Hashed-
cubes query results, categorical queries form the basis for histograms,
binned scatterplots and time series plots.

To process a categorical dimension, each record attribute is tagged
and a position in the output list of pivots is computed. This algorithm
compares an element against all dimension attributes and returns a bin
tag. Once this finishes, the sorted list of pivots is created. For a categor-
ical dimension of n distinct values or ranges, at most n pivots can be
created. Hashedcubes stores a structure called CategoricalNode which
implements a dense vector based on the number of unique attributes.
Consider the categorical dimension in Figure 2d, which has as input a
list of pivots of size 4. Every input creates a CategoricalNode that has
a vector with two pivots, representing either Windows or Linux. The
result of processing this dimension creates a list of pivots of size 6, with
4 CategoricalNode objects (object 1: [0-0],[1,2]; object 2: [3,4],[5,5];
object 3: [6-7]; object 4: [8-9]).

Unlike the processing of multiple spatial dimensions (which are
processed in an interleaving fashion), multiple categorical dimensions
are generated in sequence.

3.5 Temporal Dimensions
We take advantage of the fact that a pivot represents an interval to
represent temporal dimensions. Consider the example of a temporal
dimension that needs to be processed to create bins for each different
day. The building algorithm classifies each element of the input in the
corresponding bin. The result of this process is a sparse list of sets
since a bin is created if it has, at least, one record. From this list, a
compact list of timestamped pivots is created, as illustrated in Figure 5.

[0-1] [5-5][3-3][2-2] [4-4]

4 7 3 4 7

[0-2] [3-5] [6-6]

Dimension N+1 - Temporal

4 7

[6-6]

2

3 4 7 2
time time time

In
pu

t
Pi

vo
ts

O
ut

pu
t

Pi
vo

ts

Fig. 5. Temporal dimension indexing. A period of time is represented by
a dense list of timestamped pivots. Each black circle represents a record
that has been tagged to a specific bin.

The algorithm for building the temporal dimension is similar to the
one for categorical dimensions. It tags each record with its respective
bin since epoch time. Hashedcubes supports any granularity multiple
of milliseconds, and the time interval is defined by the building schema
(e.g., 15 minutes, 1 hour, 4 hours, 1 week, etc). Take as an example
a schema that aggregates time by the hour, and two records with a
difference of 40 minutes. These records are tagged to the same bin, and
consequently, represented by a single pivot.

This algorithm enables temporal queries to be efficiently answered
without requiring a hierarchical data structure. This is accomplished
with two executions of a binary search algorithm, which finds the pivot
with the smallest and greatest values from the period of time. This is
precisely the same algorithm used by Lins et al.’s Nanocubes [32].

3.6 Queries

A query into a Hashedcubes comprises a set of clauses. Each clause
corresponds uniquely to a dimension, and defines either constraints on
values or group-by directives (often a dimension will contain both a
group-by directive and a value constraint). Constraint clauses specify
regions of the dataset to be aggregated over, while group-by clauses
indicate partition boundaries for the result, in direct analogy to SQL’s
group by clause (eg. different bins of a monthly histogram as in a
“group by month” SQL clause, or nodes of a quadtree for a multiresolu-
tion heatmap plot).

The result of a Hashedcubes query is a list of aggregated pivots.
As discussed in Section 3, Hashedcubes does not store precomputed
aggregations across every possible set of dimensions. Instead, it ma-
terializes only a portion of all combinations (corresponding to a strict
prefix ordering of the dimensions as alluded above). The query execu-
tion algorithm takes advantage of the pivot hierarchy to compute the
missing aggregations on-the-fly, scanning subintervals of dimensions
as necessary.

Most queries contain a group-by clause. In queries broken down
by latitude and longitude (as in those which generate heatmaps), the
spatial dimension is that clause. In queries broken down by categorical
attributes or timestamps, any of the multiple categorical or temporal
dimensions can be the group-by clause. Take as example the schema
in Figure 2d. Assume we are interested in the count of all objects
with quadrants 0 and 1 as spatial coordinates and categorical attribute
Windows. In this case, the result of the query is exactly the contents
of a single pivot in that dimension, and no aggregations are necessary.
This query is efficient because the constraint clauses form a prefix
over the ordering of the dimensions (in fact, it’s the entire dimension
set). Consider, on the other hand, a query that requests the count of
all objects with categorical attribute Windows, regardless of spatial
coordinates. In this case, there is no single pivot storing the final result,
and so it is clear that some on-the-fly aggregation will be required.

The full algorithm proceeds as follows. Initially, the query range is
the dataset universe represented by the root pivot [0,n−1]. The query
result in each dimension is a delimiting list of pivots of the selected
data, thus, these lists become the new range query, similar to a breadth
first search algorithm that uses two lists, one for expanding and one

for temporary storage. This process is iteratively repeated until the last
dimension. Note that, unlike tree-based data structures, scans happen
along arrays. Such approach tend to offer appealing performance, since
the CPU cache automatically optimizes burst memory operations [16,
29].

4 IMPLEMENTATION

The current implementation of Hashedcubes uses a simple client-server
architecture. The server reads the data from a file (e.g. CSV tabu-
lar files), builds the data structure and enters an event loop that waits
for queries from the client. The server is implemented in C++. Since
Hashedcubes uses linear-based memory structures such as sorted arrays,
it preallocates chunks of memory to avoid the overhead of repeated
memory allocations and deallocations, which are common operations
in tree-based data structures. Besides the sorting of the index arrays,
Hashedcubes does not require any data precomputation prior to build-
ing its data structure. The sorting of the data array dominates the
construction time, as we discuss in Section 6.2.

For the representation of spatial values, Hashedcubes uses the spher-
ical Mercator projection popular with map tile providers such as Open-
StreetMap [19]. Typically, map tiles providers use coordinates (x,y,z)
for each tile image. The tuple [x,y] corresponds to integer addresses,
while z represents the zoom level, in most cases varying from 0 (max-
imum zoom out) to 18 (maximum zoom in). Each zoom increment
doubles the [x,y] resolution, and consists of 4n tiles. We choose to limit
the spatial coordinates to a maximum of 26 levels: the maximum zoom
value plus 8, corresponding to the typical tile size of 256x256. The
26-level subdivision naturally yields a 26-bit address for each of the x
and y coordinates, and these addresses can be easily employed for the
hierarchical sorting in spatial coordinates.

The server is easily parallelizable since the data structure does not
change after building. It exposes the querying API via HTTP (as in Ta-
ble 1) through a web service implementation that handles concurrent
requests in multiple threads. In the front-end, the prototype client
is written in Javascript, SVG, and HTML5; notable libraries include
D3 [9] and Leaflet [1], as shown in Figure 6.

5 DATASETS AND SCHEMAS

In this section, we report an evaluation of Hashedcubes using a collec-
tion of publicly-available datasets. We collected seven datasets that
range from 4.7 million to 1 billion records, including some used in
other data cube visualization proposals, as well as the schema they used.
In addition, we introduced some variations on the schemata used in
previous experiments in order to properly stress the features of both
Hashedcubes and previous systems. We summarize all of the schema
variations and datasets in Table 2.

5.1 Location-Based Social Networks
Brightkite and Gowalla are two former location-based social networks:
users participated by sharing their locations via check-ins events. Both
datasets are publicly available in Leskovec’s Stanford Large Network
Dataset Collection [30]. They consist of time and location information
of user check-ins, collected by Cho et al. [12]. Brightkite check-ins
range from April 2008 to October 2010, and Gowalla from February
2009 to October 2010. We built Hashedcubes using two different
schemas for these datasets. The first one replicates the schema used by
Nanocubes and encodes latitude and longitude as spatial information,
hour of the day and day of the week as categorical variables, and check-
in time as temporal variables. The second one replicates the imMens
schema and encodes latitude and longitude as spatial information, hour
of the day, and day of the month as categorical information. In Figure 1,
we use Hashedcubes to visualize Brightkite check-ins in Europe and to
highlight Brightkite releases of its iOS app and its 2.0 platform version.

5.2 Airline On-Time Performance
The U.S. Department of Transportation tracks the on-time performance
of domestic flights by U.S. air carriers. This dataset was made publicly
available in [4, 43], and covers over 121 million flights in a 20 year
period, from 1987 to 2008. Records include over 29 fields. We used

Table 1. Subset of queries supported by Hashedcubes HTTP API.
Queries (in natural language) Spatial Categorical Temporal URL

heatmap of all check-ins in Mondays drilldown rollup rollup /tile/tile/0/0/0/0/8/where/day of week=Monday
hour of day histogram of check-ins in the USA rollup drilldown rollup /group/hour of day/region/0/USA
scatterplot of hour of day against day of week of check-ins in Europe rollup drilldown rollup /scatter/field/hour of day/field/day of week/region/0/Europe
time-series of check-ins in Fridays and between Jan and Feb of 2010 rollup rollup drilldown /tseries/tseries/0/Jan-2010/Feb-2010/where/day of week=Friday

Fig. 6. Visual exploration of the twitter dataset during Super Bowl 2012. In addition to enabling real-time exploration using a wide range of visual
encodings, with support to brushing & linking in any dimension, Hashedcubes allows the access to the text of tweets from an external SQL server.

three different schemas for this dataset. The first one encodes the origin
airport as spatial information, departure delay and carrier delay as
categorical information, and departure delay as temporal information.
This is the same schema used in Nanocubes. The second schema is the
one used by imMens, and encodes only categorical information. The
day of the week, year, carrier, arrival delay and departure delay are
the categorical information. Note that the arrival delay and departure
delay are encoded as 15 minutes interval bins, and were designed to be
visualized using a scatter plot. The last schema is designed to exploit
the Hashedcubes ability to work with multiple spatial dimensions, so
we encoded origin and destination airports as spatial information.

5.3 SPLOM
The ScatterPlot Matrix (SPLOM) benchmark [28] was designed to
stress test the data cube technology, and has been used as validation
in recent big data visualization proposals [34, 32]. It consists of a
collection of synthetic elements with up to five dimensions. The first,
second and fifth dimensions are independent and normally distributed.
The third and fourth dimensions are, respectively, linearly and log-
linearly dependent with the first. As a synthetic dataset, we used five
different bin sizes per dimension, from 10 to 50, and varied the elements
from 100 million up to 1 billion to stress test Hashedcubes (Figure 7a).

5.4 Twitter
The data consists of geolocated tweets collected from the (formerly
open) Twitter API between November 2011 and June 2012 that orig-
inated in the United States. We used two different schemas, namely
twitter-small and twitter. The first one encodes the record origin as
spatial information, device used as categorical information, and record
collection time as temporal information. The second schema adds the
application and language, respectively 4 and 15 distinct values, as cate-
gorical informations. In Figure 1 we present and overview of tweets in
USA, and a close-up in the date and region of Superbowl 2012.

5.5 NYC Yellow and Green Taxis
The NYC Taxi and Limousine Commission (TLC) collects and provides
monthly trips records from yellow and green taxis from New York City.
Records include over 21 fields that capture pick-up and drop-off times,
pick-up and drop-off locations, trip distances, itemized fares, rate types,
payment types, driver-reported passenger counts, and others. While
yellow taxis are able to pick-up passengers in any of the five NYC
boroughs, green taxis are only allowed to pick-up passengers in outer
boroughs and in Manhattan above East 96th and West 110th Streets.

For each dataset, we used two different schemas, both encoding pick-up
and drop-off locations as spatial information. The first schema encodes
time as week bins along with categorical information: day of the week
and hour of the day. The second schema encodes time as hour bins.
In Figure 1, we highlight the use of Hashedcubes to analyze pick-up
locations from the green taxis dataset.

6 PERFORMANCE RESULTS

In this Section we discuss the performance results of Hashedcubes. We
compare the Hashedcubes memory usage, construction and query time
to recent data cube visualization proposals, namely Nanocubes [32] and
imMens [34]. Table 2 summarizes benchmark results for all schema
variations and datasets. The number of records (N) in the dataset,
quadtree leaf-size, memory usage, time to build and the accumulated
number of pivots (P) across all data structure are reported.

6.1 Memory Usage
Memory usage in Hashedcubes is directly proportional to the number
of pivots, i.e., the number of used bins per dimension. Figure 7a shows
the memory growth for the SPLOM dataset ranging from zero to one
billion inserted records. We used five schema variations that range bin
size from ten to fifty in each dimension. Records from this dataset
are collected from synthetic generators that have a normal distribution,
which means that the set of high probability values are quickly sampled,
making harder for new records with an unseen bin. It highlights an
effect known as key saturation. Due to the key saturation effect, most
inserted records does not require additional memory since their pivots
were already present in the Hashedcubes index, a phenomenon that
performs an important role to reduce memory requirements.

When comparing Hashedcubes to recent data cube strategies, mem-
ory usage sees a breakthrough from current state-of-the-art data cube
proposals, enabling the visualization of a much larger set of scales and
more complex schema configurations than imMens and Nanocubes.
Compared to Nanocubes, we find a reduction factor of up to 5.2x in
the best case, as shown in Figure 7c. Building the Hashedcubes for
brightkite, flights, twitter-small and twitter schemas, requires 366MB,
457MB, 4GB and 9.4GB of memory, respectively. For the same
schemas, Nanocubes requires 1.6GB, 2.3GB, 10.2GB and 46.4GB,
enough for present day servers, but above that of typical notebooks and
workstations. imMens uses a dense indexing to speed up aggregation
time and to simplify parallel query processing, but this implies that
memory usage is proportional to the cardinality of its key space. Fur-
thermore, it lacks support for compound brushing of more than four di-

Table 2. Overall summary of the relevant information for building Hashedcubes.
dataset objects (N) leaf-size memory time pivots (P) schema

splom-101,2 1.0 B N/A 5 MB 38:32 m 26 K d1 (10), d2 (10), d3 (10), d4 (10), d5 (10)
splom-501,2 1.0 B N/A 349 MB 46:28 m 12.7 M d1 (50), d2 (50), d3 (50), d4 (50), d5 (50)
brightkite1 4.5 M 32 366 MB 7 s 6.7 M lat0, lon0, hour of day (24), day of week (7), time (week)
brightkite2 4.5 M 32 375 MB 10 s 6.8 M lat0, lon0, month of year (12), hour of day (24), day of month (31)
brightkite-alternative 4.5 M 32 468 MB 8 s 8.0 M lat0, lon0, time (week), hour of day (24), day of week (7)
gowalla1 6.4 M 32 743 MB 13 s 12.6 M lat0, lon0, hour of day (24), day of week (7), time (week)
flights 121.2 M 32 1.5 GB 06:55 m 61.0 M lat0, lon0, lat1, lon1, departure delay (9), carrier (29), time (4 hours)
flights1 121.2 M 32 457 MB 03:56 m 19.5 M lat0, lon0, departure delay (9), carrier (29), time (4 hours)
flights2 50.3 M N/A 18 MB 12 s 396 K day of week (7), year (21), carrier (29), arr delay (147), dep delay (147)
twitter-small1 210.6 M 64 4.9 GB 10:53 m 137 M lat0, lon0, device (5), time (4 hours)
twitter1 210.6 M 64 9.4 GB 12:04 m 203 M lat0, lon0, app (4), device (5), language (15), time (4 hours)
green-taxis-small 24.5 M 64 788 MB 01:35 m 27 M lat0, lon0, lat1, lon1, time (hour)
green taxis 24.5 M 64 3.0 GB 01:49 m 52 M lat0, lon0, lat1, lon1, day of week (7), hour of day (24), time (week)
yellow-taxis-small 224.1 M 64 7.0 GB 18:14 m 243 M lat0, lon0, lat1, lon1, time (hour)
yellow-taxis 224.1 M 64 12.6 GB 20:38 m 473 M lat0, lon0, lat1, lon1, day of week (7), hour of day (24), time (week)

1Schema used by Nanocubes. 2Schema used by imMens.

mensions, once it requires computing prohibitively large 5-dimensional
data tiles for the adopted approach.

We also evaluated Hashedcubes for schemas with multiple spatial
dimensions, a feature that was not supported by Nanocubes and imMens
in their initial public releases. For that, we introduced schema variations
and two unstudied datasets, namely, the green and yellow NYC taxis.
These datasets are particularly hard because both have a very restrict
spatial region, thus pushing spatial dimensions data structures to deeper
levels of subdivision. Moreover, we tested two time resolutions, by hour
and over a week along with day of week and hour of day categorical
attributes. We have attempted to create Nanocubes for these schemas,
but found them to take a prohibitively large amount of memory. Before
killing the nanocube process, we estimated the eventual memory usage
of the yellow-taxis-small schema to be around 124GB for a pair of
20-bit quadtree addresses, and 321GB for 25-bit addresses (and an
estimated five hours of construction time). We made no attempt to
generate a nanocube of the full yellow taxis schema.

0

50

100

150

200

250

300

350

400

0 M 200 M 400 M 600 M 800 M 1 B

H
as

h
ec

u
b

es
 S

iz
e

in
 M

B

Number of Elements

splom-10

splom-20

splom-30

splom-40

splom-50

366 457
4900

9400

1600 2400
10200

46400

0%

20%

40%

60%

80%

100%

brightkite flights twitter-small twitter

Memory Usage (in MB)

Nanocubes Hashedcubes

7 237 653 706

210 1867 4428 21132

0%

20%

40%

60%

80%

100%

brightkite flights twitter-small twitter

Time (in seconds)

Nanocubes Hashedcubes

A B

C

Fig. 7. (a) Hashedcubes memory usage growth while inserting SPLOM
dataset elements. Notice the key saturation effect. (b) and (c) compare
Hashedcubes construction time and memory usage to Nanocubes.

6.2 Construction Time

Construction time was a relevant factor when designing Hashedcubes.
The construction algorithm was optimized for speed by avoiding re-
peated memory allocations and deallocations. The bottleneck of this
algorithm are the sorting phases, specially when handling spatial di-
mensions. The pivot hierarchy uses a sorting step for every quadtree,
which can be very demanding for datasets with restricted geographical
coverage and multiple spatial dimensions, since these cases tend to gen-
erate trees next to the maximum recursion depth supported. Compared
to Nanocubes, we obtained a reduction factor of up to 30x in the best
case, as shown in Figure 7b. On average, the construction time is about
10 times faster.

statistic/
dataset brightkite brightkite alt. gowalla flights twitter-

small

queries N 507880 507880 102430 215980 48190

median 0 ms 0 ms 0 ms 0 ms 0 ms

mode 0 ms 0 ms 0 ms 0 ms 0 ms

mean 0 ms 1 ms 1 ms 0 ms 4 ms

stdev 4.21 ms 11.02 ms 7.19 ms 1.03 ms 66.93 ms

maximum 94 ms 281 ms 114 ms 159 ms 1382 ms

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

<=1 ms <=10 ms <=20 ms <=30 ms <=40 ms >40 ms

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Query Latency (ms)

brightkite brightkite-alternative gowalla flights twitter-small

Fig. 8. Cumulative percentages of query latency from real-world sce-
narios. The vast majority of queries are answered within the real-time
budget (<40ms or >25fps) for different schemas and datasets.

6.3 Query Time

We used a set of real-world queries graciously provided by AT&T
Research to assess query latency. Query requests were collected on the
public Nanocubes [32] web site, in which users performed brushing and
linking across dimensions of Brightkite, Gowalla, Flights and Twitter
datasets. This set provides a sample of common actions when exploring
real-time interactive systems using a wide range of visual encodings.
Unlike synthetic benchmarks, it allows to validate Hashedcubes in an
uncontrolled environment. We implemented a script that translates
Nanocube queries to Hashedcubes queries and compares the results of
both proposals. For that, we used the same schema from Nanocubes.

Figure 8 shows the cumulative percentages when the set of queries
is executed in an Intel Core i7 4790 CPU. We report the median, mode,
mean, standard deviation and maximum latency for each of the tested
schemas. Typically, Hashedcubes performance level is within the real-
time budget (<40ms or >25fps); only one in fifty queries takes more
than 40ms. The most time-consuming queries are those which require
a large number of aggregations of many small pivots. These typically
happen when the query constraints are specified over a variable that
has been “finely split” over a large range of indices, and yet no filtering
in previous dimension rejects has occurred. In the worst case, this
might degenerate to a linear scan over the dataset. For other schemas
and datasets, Hashedcubes presented similar frequency distribution,
consistently answering many queries under 40ms for various rollups
and drill down test combinations. The server to client latency was
dominated by transference of geographical tiles information.

Nanocubes have a very small worst-case value, around 12ms. im-
Mens sustains a 20ms update time on average. It has to be noted,
however, that both solutions uses pre-computation and a higher mem-
ory footprint in favor of faster queries. Hashedcubes, instead, balances
these two variables and allows the real-time exploration and analysis
of datasets that previously required a prohibitory amount of space.
Moreover, it supports more flexible schema configurations that enables
re-ordering and multiple spatial, categorical and temporal dimensions.

7 DISCUSSION

The underlying concept behind Hashedcubes, the pivot hierarchy, can
be constructed in any given order. In addition, it allows a natural
integration with an external database to complement visual queries. In
this Section, we discuss these two extensions and how the quadtree leaf
size impacts memory usage and visual accuracy.

Exchanging the Pivoting Order: Exchanging the order in
which the variables are sorted impacts both memory usage and running
time of specific queries. In Figure 8 we compare two schemas of the
same dataset: brightkite and brightkite-alternative. The set of real-
world queries described in Section 6 was used to test the Hashedcubes
implementation. The alternative schema, using a spatial-temporal-
categorical ordering, notably increases both standard deviation and
maximum query time from 4.21ms and 94ms to, respectively, 11.02ms
and 281ms. Moreover, it increases memory consumption by 25%. On
the other hand, in this schema temporal queries answer much faster
since there are fewer pivots that need to be processed by the querying
algorithm. Such tradeoffs can be considered by a database administrator
to choose one layout over another. Automatically tuning the ordering
of variables, or possibly creating redundant Hashedcubes instances to
process different queries, is a natural area for future research.

Integration with Database of Record: Large data visualiza-
tion systems like imMens and Nanocubes, along with Hashedcubes,
can be considered approximate databases, which means that they use
data aggregation which might discard some information of the original
record. The underlying concept behind Hashedcubes allows a simple
integration with external databases. The retrieval of complementary
information can be useful, for example, when datasets have text at-
tributes along with spatial, categorical and temporal values, or when
these values are not relevant for the exploratory interactive system itself.
All real-world datasets used to validate Hashedcubes contain additional
information that is ignored by the schema configurations. In Figure 6

HCF
Files

21

3 4

4

5

21

SQL Response

SQL Query

Q
uery

Re
sp

on
se

SQL to
Hashedcubes

SQL to
Intermediary

Format
HCF to

Hashedcubes

Fig. 9. Hashedcubes supports recovering the original data by using a
linking structure. Pivots represent the values from the SQL index, which
allows to efficiently match all rows of a given query. Hashedcubes can
be built directly from a SQL database or from an intermediary format.

we show the visual exploration of a large dataset associated with the
retrieval of complementary data from an external SQL server.

Hashedcubes allows to recover original data by associating the pivot
indexes with an external index, for instance, an SQL index. As shown
in Figure 9, data is loaded from our intermediary binary format (to
obtain faster building times) or directly from the SQL server, and sorted
out accordingly to the external ordering. Hashedcubes answers queries
in real-time and simultaneously triggers asynchronous SQL queries
based on the pivot selection. This natural extension encourages the
complement of visual queries with external information.

Leaf-Size Trade-off vs Visual Accuracy: During the con-
struction of Hashedcubes, the output of every dimension serves as input
for the following dimension, and each pivot is subsequently refined to
represent smaller data subsets. Spatial dimensions adopt a minimum
quadtree leaf-size to balance running time, memory usage and visual
accuracy, as shown in Figure 10 (a), (b) and (c). The leaf-size threshold
creates a phenomenon called truncated pivot. This indicates that a given
spatial region will be no longer subdivided if a minimum leaf-size is
reached. Since visual accuracy was a relevant factor when designing
Hashedcubes, we implemented a specific heatmap visualization that
allows identifying truncated pivot occurrences (Figure 10a).

Truncated pivots are typically found in smaller geographical regions
with very low data sampling, an arrangement which might mask outliers.
As a workaround to this issue, Hashedcubes users can integrate external
databases to recover precise spatial information of a specific region, as
discussed previously. It has to be noted, however, that Hashedcubes
supports any leaf-size threshold. The default values for the schemas
in Table 2 were chosen to achieve a good balance between running
time and memory usage while producing a similar visual result when
compared to the other data cube visualization proposals (Figure 11).

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented Hashedcubes, a fast, easy to implement
and memory efficient data structure to answer queries from interactive
visualization tools that explore and analyzes large multidimensional
datasets. Pivot hierarchy, the underlying concept behind Hashedcubes,
enables traversal in any order and allows to include multiple spatial
dimensions, which is useful to visualize origin-destinations datasets.
Furthermore, it supports access to the original data by integrating the
data structure with an external database.

Our major contributions have shown that (i) is possible to represent
hierarchical and flat data structures using an optimized pivot schema
that is stored in a linear fashion way, and (ii) demonstrated that this
leads to memory savings over other data cube visualization proposals, as
shown in Section 6. Taking advantage of the performance level given by
Hashedcubes, researchers can develop richer and seamless interactive

leaf-size: 32 leaf-size: 16 leaf-size: 8
(a) Brightkite overview. Primitive: rectangles, Colormap: red-yellow-white, Density Aware.

leaf-size: 32 leaf-size: 16 leaf-size: 8
(b) Brightkite overview. Primitive: circles, Colormap: red-yellow-white, Density Aware.

leaf-size: 32 leaf-size: 16 leaf-size: 8
(c) Brightkite overview. Primitive: circles, Colormap: light-blue-dark, Not Density Aware.

Fig. 10. Hashedcubes different heatmap visualizations showcase. Notice the leaf size variation from 32 to 8 by looking into the highlighted regions. It
impacts running time, memory usage and visual accuracy. (a) allows to identify truncated pivot occurrences by representing them as rectangles.
Color is a factor of area and occupancy. (b) and (c) use circles to represent the center of an aggregated region (i.e., quadtree bounding box).

Hashedcubes (Circles, Density Aware, Leaf-size: 32) Nanocubes imMens (maximum supported zoom by public demo)

Fig. 11. Los Angeles (United States) city view of detailed Brightkite heatmaps from recent data cube visualization proposals. Apart from the use
of different colormaps across Hashedcubes, Nanocubes and imMens, what produces a slightly dissimilar visual appearance, Hashedcubes pivot
concept enables a high visual accuracy along with reduced memory consumption when compared against other data cube visualization proposals.
Notice that Hashedcubes matches Nanocubes visual representation, even though the latter does not experience leaf-size trade-offs.

visualization tools. Moreover, it enables the visual exploration of
datasets and schemas that previously take a prohibitory amount of
space or time.

As future work, we would like to expand pivot hierarchy concept to
automatically find optimal pivoting ordering by calculating a metric that
balances running time and memory usage. Since Hashedcubes building
algorithms mainly require careful sorting operations that can be adopted
to current Web technologies, we also want to explore an exclusively
browser-side implementation. Hashedcubes uses a querying algorithm
similar to a breadth-first search, with two working lists, one for ex-
panding and another for temporary storage. We envision an alternative

approach that use just one list, but that require significant enhancements
to the data structure and are left for future work. Another promising re-
search area is the handle of dynamic datasets or streaming data. Hashed-
cubes can benefit from existing approaches like Packed-Memory Ar-
rays [8], a concept that aligns surprisingly well with Hashedcubes pivot
notion and its worth to be further investigated. Hashedcubes is available
as open source software at https://github.com/cicerolp/hashedcubes.

ACKNOWLEDGMENTS

We would like to thank AT&T Research for providing the set of queries,
Capes for the financial support, as well as the anonymous reviewers.

https://github.com/cicerolp/hashedcubes

REFERENCES

[1] V. Agafonkin. Leaflet - a Javascript library for mobile-friendly interactive
maps, 2014. http://leafletjs.com/.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: Queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 29–42. ACM, 2013.

[3] R. Agrawal, A. Kadadi, X. Dai, and F. Andres. Challenges and oppor-
tunities with big data visualization. In Proc. of the 7th International
Conference on Management of Computational and Collective intelligence
in Digital EcoSystems, MEDES ’15, pages 169–173. ACM, 2015.

[4] American Statistical Association Data Expo. Airline on-time performance
dataset, 2009.

[5] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: Efficient
time series search and retrieval. In Proceedings of the 11th International
Conference on Extending Database Technology: Advances in Database
Technology, pages 252–263. ACM, 2008.

[6] G. Battle, R. Chang, and M. Ston. Dynamic prefetching of data tiles for
interactive visualization. Technical Report MIT-CSAIL-TR-2015-031,
Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 2015.

[7] L. Battle, M. Stonebraker, and R. Chang. Dynamic reduction of query re-
sult sets for interactive visualizaton. In Big Data, 2013 IEEE International
Conference on, pages 1–8, Oct 2013.

[8] M. A. Bender and H. Hu. An adaptive packed-memory array. ACM Trans.
Database Syst., 32(4), Nov. 2007.

[9] M. Bostock. D3.js - data-driven documents, 2015. https://d3js.org/.
[10] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. isax 2.0: Indexing

and mining one billion time series. In Proceedings of the 2010 IEEE
International Conference on Data Mining, pages 58–67. IEEE Computer
Society, 2010.

[11] G. Cao, S. Wang, M. Hwang, A. Padmanabhan, Z. Zhang, and K. Soltani.
A scalable framework for spatiotemporal analysis of location-based social
media data. Computers, Environment and Urban Systems, 51:70 – 82,
2015.

[12] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: User
movement in location-based social networks. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1082–1090. ACM, 2011.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI04: Proceedings Of The 6th Conference On Symposium
On Operating Systems Design And Implementation. USENIX Association,
2004.

[14] D. Fisher, I. Popov, S. Drucker, and m. schraefel. Trust me, i’m par-
tially right: Incremental visualization lets analysts explore large datasets
faster. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’12, pages 1673–1682. ACM, 2012.

[15] P. Godfrey, J. Gryz, and P. Lasek. Interactive visualization of large data sets.
Technical Report EECS-2015-03, Department of Electrical Engineering
and Computer Science, York University, 2015.

[16] J. R. Goodman. Using cache memory to reduce processor-memory traffic.
In Proceedings of the 10th Annual International Symposium on Computer
Architecture, pages 124–131. ACM, 1983.

[17] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery, 1(1):29–53, Jan. 1997.

[18] D. Gupta and S. Siddiqui. Big data implementation and visualization.
In Advances in Engineering and Technology Research (ICAETR), 2014
International Conference on, pages 1–10, Aug 2014.

[19] M. M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7(4):12–18, Oct. 2008.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. ACM
SIGMOD Record, 26(2):171–182, June 1997.

[21] X. Huang, Y. Zhao, C. Ma, J. Yang, X. Ye, and C. Zhang. Trajgraph: A
graph-based visual analytics approach to studying urban network central-
ities using taxi trajectory data. IEEE Transactions on Visualization and
Computer Graphics, 22(1):160–169, Jan 2016.

[22] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data explo-
ration techniques. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages 277–281. ACM,

2015.
[23] J.-F. Im, F. G. Villegas, and M. J. McGuffin. Visreduce: Fast and respon-

sive incremental information visualization of large datasets. In 2013 IEEE
International Conference on Big Data, pages 25–32. IEEE, 2013.

[24] X. Jiang, C. Zheng, Y. Tian, and R. Liang. Large-scale taxi o/d visual
analytics for understanding metropolitan human movement patterns. J.
Vis., 18(2):185–200, May 2015.

[25] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A visualization-
oriented time series data aggregation. Proc. VLDB Endow., 7(10):797–808,
June 2014.

[26] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. Vdda: Automatic
visualization-driven data aggregation in relational databases. The VLDB
Journal, 25(1):53–77, Feb. 2016.

[27] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and
interactive cube exploration. In Data Engineering (ICDE), 2014 IEEE
30th International Conference on, pages 472–483, March 2014.

[28] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer. Profiler:
Integrated statistical analysis and visualization for data quality assessment.
In Proceedings of the International Working Conference on Advanced
Visual Interfaces, pages 547–554. ACM, 2012.

[29] K. Krishnamohan, P. Farmwald, and F. Ware. Prefetching into a cache to
minimize main memory access time and cache size in a computer system,
Mar. 12 1996. US Patent 5,499,355.

[30] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[31] S. Li, S. Dragicevic, F. A. Castro, M. Sester, S. Winter, A. Coltekin,
C. Pettit, B. Jiang, J. Haworth, A. Stein, and T. Cheng. Geospatial big data
handling theory and methods: A review and research challenges. {ISPRS}
Journal of Photogrammetry and Remote Sensing, pages –, 2015.

[32] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-time
exploration of spatiotemporal datasets. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2456–2465, Dec. 2013.

[33] Z. Liu and J. Heer. The effects of interactive latency on exploratory visual
analysis. IEEE Transactions on Visualization and Computer Graphics,
20(12):2122–2131, Dec 2014.

[34] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. In Proceedings of the 15th Eurographics Conference on Visualization,
pages 421–430. Eurographics Association, 2013.

[35] B. Mora. Naive ray-tracing: A divide-and-conquer approach. ACM Trans.
Graph., 30(5):117:1–117:12, Oct. 2011.

[36] K. Morton, M. Balazinska, D. Grossman, and J. Mackinlay. Support
the data enthusiast: Challenges for next-generation data-analysis systems.
Proc. VLDB Endow., 7(6):453–456, Feb. 2014.

[37] S. Nepomnyachiy, B. Gelley, W. Jiang, and T. Minkus. What, where, and
when: Keyword search with spatio-temporal ranges. In Proceedings of
the 8th Workshop on Geographic Information Retrieval, GIR ’14, pages
2:1–2:8. ACM, 2014.

[38] C. Pahins and C. Pozzer. Improving divide-and-conquer ray-tracing using a
parallel approach. In Proceedings of the 2014 27th SIBGRAPI Conference
on Graphics, Patterns and Images, pages 9–16. IEEE Computer Society,
2014.

[39] H. Samet. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling). Morgan Kaufmann Publishers Inc., 2005.

[40] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized time
series. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 623–631. ACM, 2008.

[41] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf:
Shrinking the petacube. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’02, pages
464–475. ACM, 2002.

[42] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual analytics: User-
driven visual exploration of in-progress analytics. IEEE Transactions on
Visualization and Computer Graphics, 20(12):1653–1662, Dec 2014.

[43] H. Wickham. Asa 2009 data expo. Journal of Computational and Graphi-
cal Statistics, 20(2):281–283, 2011.

[44] H. Wickham. Bin-summarise-smooth: a framework for visualising large
data. Technical Report , had.co.nz, 2013.

[45] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems: Vision paper. Proc. VLDB Endow., 7(10):903–906,
June 2014.

http://leafletjs.com/
https://d3js.org/
http://snap.stanford.edu/data

	Introduction
	Related Work
	Hashedcubes
	Some intuition
	Construction Algorithm
	Spatial Dimensions
	Categorical Dimensions
	Temporal Dimensions
	Queries

	Implementation
	Datasets and Schemas
	Location-Based Social Networks
	Airline On-Time Performance
	SPLOM
	Twitter
	NYC Yellow and Green Taxis

	Performance Results
	Memory Usage
	Construction Time
	Query Time

	Discussion
	Conclusions and Future Work

